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1 Executive Summary

This deliverable reports on the activities carried out until September 2025 under Tasks T4.3 and T4.4 of Work
Package (WP)4 within the TIMES project.

» Task T4.3, titled “THz communications in smart propagation environments”, focuses on the investigation
of smart radio environments to enable physics-aware algorithms and procedures for Terahertz (THz)
networks;

» Task T4.4, titled “THz-tailored protocol design and optimization for intelligent multi-goal mesh networks”,
aims to develop Medium Access Control (MAC) and NETwork (NET) layer protocols specifically tailored
to THz communications in intelligent, multi-goal mesh networks.

The activities reported in this document make use of inputs from other WPs of the project, including WP2 for
the definition of simulation scenarios and target Key Performance Indicators (KPIs), WP3 for THz propagation
models and Reflective Intelligent Surface (RIS) characterization, and WP5 for simulation parameters. Part
of the results hereby presented will be used by WP6 for the implementation of the target Proof Of Concepts
(POCs).

The document is thus structured as follows:

+ Section 2 provides a brief recap of the main objectives of the TIMES project and explains how this
deliverable contributes to them;

+ Section 3 presents a concise overview of the inputs collected from other WPs (specifically WP2, WP3
and WP5) and the literature to define the system models adopted for the proposed solutions. These
primarily include physical (PHY) layer aspects such as Radio Frequency (RF) impairments, channel and
RIS models;

» Section 4 details the outcomes of Task 4.3, which include the development of enhanced algorithms
and procedures for exploiting smart propagation environments in THz-based industrial scenarios. The
section covers channel estimation, beam focusing, mitigation of RF impairments in the presence of RISs,
as well as an analysis of theoretical performance enabled by sensing, RIS and Multiple-Input-Multiple-
Output (MIMO) technologies, both in far and near fields;

+ Section 5 outlines the contributions of Task 4.4, where upper-layer solutions for intelligent THz networks
have been developed. This includes both model-based and data-driven protocol designs and network
optimizations for multi-goal industrial mesh networks, as well as predictive algorithms for blockage de-
tection and proactive resource allocation.

It is worth noting that the results presented in this deliverable build upon the foundations laid in Deliverable D4.2
[1], providing further advancements and insights into the ongoing development of the TIMES project.

101096307 - TIMES 7 0f 110
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2 Introduction

The development of next-generation wireless systems is expected to unlock the potential of THz communica-
tions for a wide range of applications, among which industrial automation stands as one of the most promising
and demanding. The adoption of THz frequencies promises ultra-high data rates and ultra-low latency, es-
sential to meet the stringent requirements of next-generation industrial environments. However, the inherent
propagation challenges of THz signals, such as high path loss, sensitivity to blockages, and limited scattering,
necessitate a fundamental rethinking of the wireless communication stack, from the physical layer to network
control and management.

In this context, the TIMES project introduces two foundational innovations tailored to the needs of THz-enabled
industrial systems: the use of smart propagation environments and the design of intelligent multi-goal mesh
networks. These two pillars aim to jointly improve both the physical robustness and the network-level adapt-
ability of THz communication systems in complex, dynamic environments.

Smart propagation environments rely on programmable surfaces, such as RISs and metasurfaces, to manip-
ulate the wireless channel in real time, enhancing functionalities such as beamforming/beamfocusing, and
improving reliability in scenarios traditionally considered hostile to high-frequency transmission. Coupled with
the opportunities given by near-field propagation, such as enhanced sensing capabilities and increased spatial
multiplexing gains, these technologies represent a crucial component in addressing the spatial and spectral
characteristics of THz links in complex industrial settings.

At the network level, the TIMES project introduces intelligent mesh architectures designed for multi-goal oper-
ation, where communication, sensing, and heterogeneous tasks coexist and dynamically compete for network
resources. These networks leverage Artificial Intelligence (Al)-based mechanisms for adaptive MAC protocols,
routing, predictive maintenance, and proactive resource allocation, ensuring resilience and performance under
highly variable environmental and operational conditions.

This deliverable presents the technical results achieved within this framework, with contributions spanning
both the physical and upper layers and referring to both pillars. On the physical layer side, it includes novel
procedures, along with theoretical characterization, for channel estimation, RF impairment mitigation, beam
focusing, and sensing in the presence of smart surfaces. On the network layer side, it introduces data-driven
and model-based designs for THz mesh networks, as well as predictive and Al-assisted solutions for MAC
protocols, routing, handover and network management.

Altogether, the findings presented in this deliverable contribute to the realization of a highly adaptive, high-
capacity, and context-aware wireless infrastructure for future industrial applications operating at THz frequen-
cies. By combining advanced physical-layer techniques with intelligent network-level coordination, the innova-
tion of this deliverable sets a solid foundation for the deployment of THz technologies in realistic, performance-
critical industrial environments. Moreover, the outcomes presented in this deliverable will provide guidelines
for future activities of the project, including the realization of POCs demonstrating the potential of developed
solutions.
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3 Reference models

In this section, we present the reference models that have been adopted for the modeling of RF impairments,
propagation channels, and RISs.

3.1 RF impairments

In Deliverable 4.2 [1], we mainly investigated the effect of phase shifting errors at the RIS on the performance of
a far-field communication link. The performance evaluation was carried out by computing the average Signal-
to-Noise-Ratio (SNR) and a bound on the spectral efficiency, where the computed spectral efficiency has led to
recommendations of the adoption of Quadrature Amplitude Modulation (QAM) modulation orders as a function
of the severity of the RIS impairments. The impairment that was considered was a phase shifting error caused
by the imperfection of the phase shifting operation at each of the RIS elements.

In this deliverable, we jointly consider two types of impairments. The first is related to the RIS, manifested
through phase-shifting errors and thus loss in beamforming gain. These impairments were introduced in Deliv-
erable 4.2 [1] and are based on the formulation in [2]. The second source of impairment is one that is prevalent
in THz systems, which is transmission Power Amplifier (PA) nonlinearities that causes waveform distortions,
and thus increased error floors at the receiver. The PA nonlinearity model is based on the analysis and pa-
rameter derivations carried out in Deliverable 4.3 [3]. It is worth mentioning that the previous deliverables (in
particular Deliverables 4.1 [4] and 4.3 [3]) consider the measurements and modeling of several other limiting
RF impairments such as oscillator phase noise, in-phase and quadrature imbalance and local oscillator chain
harmonics. In this deliverable, we focus on RF impairments that are most relevant to achieving an improved
communication coverage, which is the main motivation for deploying RISs. Toward this goal, the two main iden-
tified limitations are: i) limitations on Tx power due to PA nonlinearities and ii) reduction in RIS beamforming
accuracy arising from phase shifting errors at the RIS elements.

3.1.1 RF impairments at the RIS

Herein, we start by presenting the phase error model at each reflecting element in the RIS. Let h;, = /%,
and h,, = e/*». Therefore, each phase at the RIS element, which we denote by 6, should be adjusted such
that such that

9,, = _(¢n,t+¢n,r)- (1)
However, RIS elements can manifest imperfections in achieving a desired phase shift, and thus, we get
9,, + (ybn,t + d)n,r = €n, (2)

where ¢, is the phase error.

The phase errors at the RIS are primarily attributed to two factors: intrinsic effects and limitations in the RIS
design. Below, we provide a detailed explanation of the adopted RF impairment models at the RIS.

RIS phase shifting errors To model the phase error, a statistical approach using a generalized distribution
is adopted. The Von-Mises distribution is adopted to model ¢, Vn € {0, ..., Q — 1}, where it is modeled as an
i.i.d zero-mean Von-Mises random variable with concentration parameter x and a probability density function
that may be written as [5]

. e/@cos(y) 3

E(y)—m, —7T<y<7T ()
where fy(.) is the zero-th order modified Bessel function of the first kind defined in [6, 9.6.19]. To demonstrate
the effect of the concentration parameter «, Figure 1 shows the effect of varying « on the probability density
function (PDF) defined in (3). It is shown that as « is increased, the distribution of the Von Mises random
variable becomes more concentrated around zero.
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Figure 1: Von Mises PDFs for different values of the concentration parameter k.

RIS phase quantization effects When RISs are equipped with a large number of reflective elements, and
when operating at higher frequencies, controlling the phase shift of each element becomes a complex task.
Thus, in practical RIS setups, each RIS element is equipped with the capability to vary the phase for only a
limited number of values, i.e. quantized phase shifts. It is then crucial to incorporate the impact of quantization
on the performance of RIS assisted links.

To model the impact of quantization errors in RIS assisted links, we resort to the method proposed in [2],
where the distribution of the error resulting from the quantization procedure at each RIS element follow a
uniform distribution with varying limits, i.e.

(4)

) =u[-1.7]

where L is the number of quantization levels. Typical values used in the literature for L are 2, 4 and 8 [2].

3.1.2 Transmitter PA nonlinearity

High antenna gain and high transmission powers are needed to meet link budget constraints when commu-
nicating at the THz band. If high transmission power is relied upon to meet the link budget, it is important to
consider the nonlinearities generated as a result of adopting high transmission powers due to the nonlinearities
induced by the PA.

PA nonlinearity causes saturation in the transmission power and unwanted phase shifts that has a detrimental
effect on communication performance. Many different approaches exist to model the PA nonlinearities. We
have surveyed the different methods to model PA nonlinearities in [4], and proposed new model parameters
in [3] in the quasi-memoryless PA nonlinearity modeling framework. Amplitude Modulation to Amplitude Mod-
ulation (AM-AM) and Amplitude Modulation to Phase Modulation (AM-PM) models can be derived by using
any modeling approach that is available in the literature. In this deliverable, we use the models extracted from
the results reported in Deliverable 4.3 [3], where we have derived different model parameters related to a PA
operating at 300 GHz. The derived models were a polynomial model, a modified Rapp model, a Ghorbani and
a Saleh model. The models vary in terms of accurately predicting the performance of the PA and the simplicity
of the formula. Let us, for completeness, report the equations related to the modified Rapp model, that may be
realized by applying

G
FAMAM(Vin) = GV—_X2(L)v (5)
(1+ |G o)
(Avl_fh
FAMPM(Vin) = W, (6)
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Figure 2: Comparisons between different AM-AM models.
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Figure 3: Comparisons between different AM-PM models.

where v;, is the input voltage to the PA, G represents the small signal gain (see the related definition in [7]), p
denotes the smoothness factor, Vs, is the saturation voltage coefficient and the coefficients A, B, g are AM-PM
distortion curve parameters. This model is referred to in the literature as the modified-Rapp model [7], which
is a widely adopted quasi-memory-less model [8] that is intended to model the AM-AM and AM-PM distortion
relations. At such higher frequencies, the linear mode of operation of a power amplifier is limited. To give the
reader an idea on the limitations imposed on operating a PA at such high frequencies, we next compare the
derived model with models available in the literature as seen in Figures 2 and 3. The models that are selected
to be compared with are:

* 3GPP (< 6 GHz): This is a polynomial-fitted model for both AM-AM and AM-PM, which was proposed
in [9] for the purpose of evaluating waveforms operating below 6 GHz.

+ 3GPP (> 6 GHz): This model is a modified Rapp-fitted model, which was proposed in [9] to evaluate
waveforms operating above 6 GHz, namely 30 and 70 GHz.

» SiGe-HEXA-X: SiGe-based modified Rapp model, which was proposed in [10, 11] for an operating fre-
quency of 290 GHz.

« ETSI ISG THz-based model, which is a modified Rapp model proposed in [12] for operating frequen-
cies in the 100-200 GHz band, extracted by averaging out the modified Rapp model parameters in the
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specified frequency range solely targeting AM-AM behavior. Parameters for AM-PM behavior were left
unaddressed.

It is worth noting that the 3GPP (< 6 GHz) model is strictly evaluated in the range of input powers [—35, 9]
dBm, which is the range in which the polynomial was fitted, otherwise, the behavior of the model is unreliable.
This hints to why the modified Rapp model is preferred over the fitted polynomial model, as the ranges of input
power that are fed to the modified Rapp models exceed the range that it was fitted within while still producing
an expectable behavioral performance. One notable conclusion of this comparison is the over-estimation of
the linear region of the PA models proposed by 3GPP (both higher and lower than 6 GHz) and ETSI ISG THz-
based models when compared to our derived model. For instance, at an input power value of —10 dBm, the
3GPP (both higher and lower than 6 GHz) and ETSI ISG THz-based models still operate in the linear region for
the AM-AM case and introduce low phase shift values, while the SiGe-based MMIC and the modeled amplifier
produce around —30° phase shift, and are clearly in the compression region, which is detrimental for even
low-order QAM-based modulation.
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3.2 Channel characterization

3.2.1 Far-field channel model

In far-field conditions, the channel model considered in this deliverable has been taken from Deliverable D3.1
(Sec. 5.2.1) [13]. The latter has been derived experimentally from channel measurements and is described
using a single-band model, where the path loss PL in dB can be formulated as follows:

PL[dB] = 10 - PLE - log 9 4 FSPL(dp) + X, @)
10 dO

where d is the Tx-Rx Euclidean distance, and dy = 1 m in this work, represents the reference distance. PLE
is the path loss exponent, and X is a zero-mean Gaussian random variable with standard deviation o. Free-
Space Path-Loss (FSPL) is given by the Friis’ law as:

FSPL [dB] = 20 - logy(d) + 32.4 + 20 - log;o(f:) @)

with f. as the carrier frequency.

The path loss parameters were estimated for the Line of Sight (LOS) and Non Line of Sight (NLOS) conditions,
and we took from Table 4 in Deliverable D3.1 [13], the corresponding values for communication at THz:

Table 1: Single-band PLE and standard deviation o (in dB)

Scenario Band PLE o
LOS THz 226 1.51
NLOS THz 327 7.32

The power received from the useful receiver, Prx can be then expressed as:
Prx [dBW] = Prx [dBW] + 17X [dB] + MRX [dB] + Gtx [dB] + Grx [dB] — PL [dB], (9)

where Prx is the transmitted power, n1x, nrx are the transmitter and receiver antenna efficiencies, respectively,
Grx, Grx are the transmitter and receiver gains.

3.2.2 Near-field channel model

To illustrate the impact of near-field propagation on channel modeling, the Uniform Planar Array (UPA) model
taken from Deliverable D4.2 (Sec. 2.1) [1] and depicted in Figure 4 is considered. The array is placed in
the yz—plane of a three-dimensional space, where a spherical coordinate system is defined, with ¢ being the
azimuth angle, 6 the elevation angle and r the distance. The array has Ny elements in each row and Ny
elements in each column, resulting in a total of N = Ny x Ny elements. When the UPA elements are indexed
row-by-row by n € [1, N], the location of the n-th array element is given by

T
-1

v, = [O,y,,,z,,]T = |0,mod(n — 1, Ny)dp, {nN JdN] : (10)
H

where mod(-) denotes the modulus operation, |-| truncates the argument, and dy is the horizontal and vertical
inter-element spacing of the UPA.

The Fraunhofer distance of the array can be computed as [14]

_ 2 (11)
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Figure 4: The array-based system model.

where D = /(N§, + Ny)dy is the array aperture length and X is the wavelength. This distance is used to
distinguish between the far-field and radiative near-field regions of the array. When the distance between the
array and receiver is smaller than R, the receivers would be located within the relative near-field region of the
array. Moreover, for a Extra-Large RIS (XL-RIS)-aided system, when the distance r, between the XL-RIS and
the BS and the distance r, between the XL-RIS and the User Equipment (UE) satisfy [14]
nn o _po_ g'
n-+nrn A
the RIS-aided cascaded channel should be modeled as the near-field channel. As the increase in the array
size and the decrease in the wavelength, the Fraunhofer distance of the XL-RIS-aided system in the THz band
is likely to reach hundreds of meters. As an example, consider an array with a size of 0.2 x 0.1 m? and an
inter-element spacing dy = 2, operating at 0.3 THz (i.e., A = 0.001 m). This array consists of 5000 elements,
arranged in a 100 x 50 configuration, yielding a Fraunhofer distance of R = 100m. This implies that in the
near-field region, where {r, n} < R, the far-field approximation cannot be used, and the exact propagation
model for both the UE-RIS channel and RIS-base station (BS) must be considered instead. This model is
introduced next.

(12)

Based on the power delay profile measurement results in [15], a reasonable assumption in the THz band is
that the signal transmitted by each UE arrives at the array within a small solid angle centered around the LoS
path. We focus on a specific UE and define the LoS angles from the UE to the array as (¢, 05). Assuming a
conventional correlated Rayleigh fading channel, the channel vector h € CV can be modeled as

h ~ Nc(On, Ry) (13)
which is fully characterized by the spatial correlation matrix
rhtAry rentDe, rOht+De, - . L
Ry = ﬁ,,/ / / fo(F, ¢, O)a(F, ¢, 0)a™ (F, ¢, 0)dOd pd¥, (14)
rh— On— AGh
where 5, = %tr{R} is the average channel power (capturing pathloss and shadowing), (ra, ©n, 05) are the
distance, the azimuth and elevation angles of the considered UE, while the triplet (A,,, A,,, Ag,) accounts for
the corresponding distance and angular spreads. Also, a(7, 3, §) is the array response vector [16]:
a(F, 3,0) = [1 e X (P—F) _._,ef'%”(?/vf?)] (15)

where ¥, and 7 are the distances from the n-th array element and the reference element to a point within the
spatially spread region. The distance ¥, can be computed as [16]

?,,:?\/

_ ?\/1 3 2(y,,c059~sinN<,5+z,,sin0~) n y,%:zz,%,
F F

(16)
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where k(, §) = [cos f cos @, cos A sin @, sin 8] is the radiation direction from the point to the array. Finally, f(-) is
the normalized spatial scattering function [17]. Based on (16), the near-field array response vector in (15) is
influenced not only by @ and 6, but also by the distance 7.

3.2.3 Near-field electromagnetic interference model

In most existing RIS-aided communication systems, such as the ones investigated in Deliverable D4.2 [1],
attention is primarily given to the signals generated by the system, while the impact of Electro-Magnetic Inter-
ference (EMI) or ‘noise’ (sometimes called ‘pollution’) present in the environment is often overlooked. However,
as the size of the RIS increases, it becomes more vulnerable to EMI. This interference can arise from a variety
of sources, including man-made devices, natural background radiation, and both intentional and unintentional
factors.

We define e(i) € CV as the vector collecting the EMI during the i-th channel use, capturing any uncontrollable
factors (e.g., electromagnetic or hardware-related disturbances) affecting the incoming signals at the XL-RIS.
The EMI is modeled as e(i/) ~ Nc(Oy,02R.), and its realizations are assumed to be independent across
channel uses, i.e., E{e(i)e(i")"} = 0 for i # i’. The normalized spatial correlation matrix R, € CV*" follows
the same form as in (14), i.e.,

re+ Dy poet Dy, pOet+Do, . ~ ~
R, :/ / / f.(F, 3, 0)a(F, 3, 0)a" (7, ¢, §)did 3dF, (17)

e*Are Lpefacpe eefABE

but with a different spatial scattering function f.(7, &, ).

101096307 - TIMES BGSNS 150f 110



N

O,
D4.4 - Deliverable on multi-goal mesh network optimization and N %; <
exploitation of smart propagation environments - v1.0 T | M S

3.2.4 Raytracing-based channel modeling

In this section, we present two ray tracing tools employed for the deterministic modeling of wireless channels.
Unlike the stochastic models discussed previously, ray tracing enables precise modeling of signal propagation
in specific environments. This enables us to carry out simulations that account for the unique characteristics
of the industrial scenarios targeted by this project. As detailed in Deliverable 2.2 [18], we evaluated several ray
tracing tools and identified SiMoNe and Sionna as the most appropriate for the project’s requirements. In the
following subsections, we provide an overview of these tools and outline the rationale behind this choice.

SiMoNe The Simulator for Mobile Networks (SiMoNe) ray tracer models the propagation of electromagnetic
waves in complex environments by tracing rays between Transmitter (TX) and Receiver (RX) through a geo-
metric representation of the scene. The algorithm supports four types of deterministic wave interactions with
the environment: reflection, scattering, transmission, and diffraction. The spatial resolution of the scene is de-
fined by polygonal meshes representing walls, objects, and other obstacles. Based on the physical interaction
of rays with these surfaces, the path gain of individual rays is computed. It is important to note that, as with
conventional ray-tracing techniques, the ray-based propagation model in SiMoNe is only valid under far-field
conditions. Near-field effects such as reactive coupling or evanescent waves are not considered within the ray
tracing framework. However, first measurements involving RIS at 300 GHz carried out in [19] have shown, that
far-field solutions may be valid also for distances significantly smaller than the Fraunhofer distance.

Reflection is modeled based on the angle of incidence and the local surface normal. The strength of the re-
flected component depends on the material properties of the surface and the incident angle, following standard
Fresnel reflection models. Specular reflection is assumed, and only single-bounce or multi-bounce paths that
maintain geometric consistency are traced.

Scattering is treated as a diffuse process, typically occurring at surfaces with rough structures or non-ideal
geometries. In SiMoNe, this is modeled as an angular dispersion of energy away from the specular direction,
weighted according to empirical or material-specific scattering coefficients.

Refraction describes the partial penetration of electromagnetic energy through obstacles. In SiMoNe, this is
modeled using material-specific transmission losses that attenuate the signal power as it passes through a
surface. The loss values are derived from simplified models and are typically assigned based on empirical
data or assumed material parameters. This modeling approach enables an efficient yet realistic approximation
of signal attenuation through semi-transparent materials such as glass or plastic.

Diffraction is modeled to account for wave bending around sharp edges or corners. In SiMoNe, diffraction is
implemented based on geometric theory, allowing rays to reach regions not directly accessible through line-of-
sight or simple reflections. This mechanism is particularly relevant in environments with frequent occlusions or
narrow passageways.

The direct line-of-sight (LoS) component or rays that propagate without interaction are modeled using the
free-space pathloss model, based on the Friis transmission equation:

2
Lrs = (“f’f) (18)

where Lgs is the free-space pathloss, d is the distance between transmitter and receiver, f is the carrier
frequency, and c is the speed of light. The received power is then computed by multiplying the transmitted
power with the gains of the transmit and receive antennas and the inverse of the pathloss.

To efficiently identify valid ray paths, SiMoNe employs a spatial subdivision algorithm as described in [20],
which accelerates the intersection tests between rays and scene geometry. This enables scalable simulation
of large and complex industrial environments.

In order to enable RIS-assisted communication modeling, the ray tracing process in SiMoNe has been ex-
tended to support two-segment propagation paths. Instead of treating the RIS as a conventional reflecting
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surface, the interaction is split into two independent ray tracing steps: one from the TX to the RIS, and another
from the RIS to the RX. This approach avoids the need to model non-specular reflection directly within the ray
tracer and instead allows for postprocessing-based recombination of rays according to a programmable RIS
model [21].

To achieve this, the RIS is treated as both a virtual receiver (during the TX—RIS phase) and a virtual transmitter
(during the RIS—-RX phase). After the individual ray segments are computed, they are combined based on
geometric consistency and incident/departure angles. The resulting two-hop paths are then evaluated using an
external gain model, which maps angle-of-arrival (AoA) and angle-of-departure (AoD) pairs to corresponding
reflection coefficients or gain values. This modular approach allows flexible modeling of different RIS behaviors,
such as ideal beam steering or realistic angular-dependent scattering.

As a result of the RIS interaction, the set of possible propagation paths is obtained as the product of all rays
impinging on the RIS and all rays departing from it. This combinatorial construction can lead to a large number
of potential RIS-assisted paths. To maintain computational efficiency and physical relevance, postprocessing
filters are applied to discard paths with excessive pathloss or geometrical inconsistencies.

In SiMoNe, rays interacting with a RIS are processed by separately computing the propagation paths from the
TX to the RIS and from the RIS to the RX. Unlike conventional reflections, the RIS is modeled as a passive
programmable surface, whose contribution to the overall path gain is computed using a compensation factor
derived from the radar equation, as proposed in [22].

The total free-space path gain of the two-hop link without considering the RIS properties is given by:

where d; and d, are the distances from the TX to the RIS and from the RIS to the RX, respectively, and X\ is
the carrier wavelength.

To include the effect of the RIS, the radar equation is applied:

GRadar, d8 = 20log;o(A) + 101log;o(0) — 30log;o(47) — 20 log;o(d1) — 20 log4(d2), (20)

where o denotes the effective Radar Cross Section (RCS) of the RIS in m2. The difference between both
expressions leads to a correction term that accounts for the influence of the RIS:

@dB = GRadar,dB — GFspG,d = —20log;o(A) + 101ogo(47) + 10logyg(0). (21)

This correction factor ay4g is added to the path gain of all rays that are reflected via the RIS. The resulting
power contribution is then coherently added to all other rays at the receiver, taking both amplitude and phase
into account. This methodology enables the accurate inclusion of the RIS-induced reflection gain into the
overall received signal power.

Sionna Sionna is an open source python library developed by Nvidia for the simulation of wireless sys-
tems [23]. It includes a differentiable ray tracing tool for radio propagation modeling, which makes use of the
just-in-time compiler Dr.Jit and the Mitsuba renderer. The ray tracing algorithm combines the Shooting and
Bouncing of Rays (SBR) method to generate candidate propagation paths and the image method to determine
which of the candidates are valid. The valid paths are then taken into account to obtain the channel impulse
response. To model the interaction of EM waves with objects in the scene, multiple mechanisms are supported,
including specular reflections, diffuse reflections, and refraction. The dielectric behavior of materials is taken
into account by adopting the ITU-R recommendation P.2040-3, with the possibility of specifying custom prop-
erties for unsupported materials. Similarly to SiMoNe and other conventional ray tracing tool, the ray-based
propagation model implemented in Sionna is valid in far-field conditions. In the case of large arrays or RIS,
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near-field effects such as spherical wave propagation can be taken into account by modeling the overall chan-
nel as the superposition of links between each transmit and receive antenna elements. The tool is optimized to
run on GPUs, enabling a fast computation of propagation paths even in presence of multiple transmitters and
receivers. While not primarily intended for channel modeling at THz frequencies, this tool has been validated
through calibration with real THz channel measurements in industrial environments [24, 25].

Although SiMoNe offers extensive support for ray tracing simulations at THz frequencies, in the work presented
in Sec. 5.4 we made use of Sionna. This choice was motivated by the fact that Sionna is open source, written in
Python, and fully-differentiable, thus providing seamless compatibility with popular deep learning frameworks
and enabling an easier integration into our workflow.
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3.3 RIS modeling

The model of a THz-band XL-RIS-aided system from a given UE with a single antenna to a BS, as shown in
Figure 5, is taken from Deliverable D4.2 (Sec. 2.1) [1]. The XL-RIS is composed of N passive reconfigurable
elements, organized in a UPA with Ny rows and Ny columns, such as the one introduced in Sect. 3.2, where the
horizontal and vertical inter-element spacing is dy. Similarly, the BS is equipped with M antennas, arranged
in a UPA with My rows and My columns, with inter-element spacing dy, in both the horizontal and vertical
directions. As can be seen in Figure 5, the architecture investigated in this deliverable differs from the one
used in [1] due to the presence of EMI e(/).

In addition, in the RIS-aided system, we assume a block-fading model where each channel takes one realiza-
tion in a coherence block of 7. channel uses and independent realizations across blocks, as presented in D3.1
(Sec. 5.1.1) [13]. The channel from the UE to the RIS is called h and modelled as the correlated Rayleigh
fading channel h ~ N¢(0y, Rp), as shown in (13). The narrowband channel from the n-th RIS element to the
m-th BS element is indicated as g, ,. We call g, = [gm.1, &m2. ... &mn]" € CV the channel vector from the RIS

to the m-th BS element, while g, = [g1.n, &.n, -+ . 8u.n]T € CY denotes the channel vector from the n-th RIS
element to the BS array. Using the Kronecker model, we have that
gm ~ Nc (0w, [Rg,’,]m.ngm) (22)
g:, ~ Nc(Owm, [Rgm]n,nRgé) (23)

where [Ry/]mmRg, and [Rg, 1,,R,; are the spatial correlation matrices of g,, and g;,, respectively. Both Rg,
and R, have the same form as (14) but must be computed using the specific spatial scattering function and
channel gain corresponding to g,, and g/,. We assume the channels g, (and thus g/) and h are independent
of each other. Thus, the cascaded channel between the UE and the m-th element of the BS is given by the
N-dimensional vector

Xm = 8m @ h. (24)

3.3.1 Scalable Diagonal Scattering Matrix Model for Large RIS

The model illustrated in this section is derived from [26] and [27]. In particular, the RIS is constituted by
N = Ny x N, elements and is assumed to be passive. Moreover, it follows a single-connected architecture,
where each RIS element is connected to a single tunable complex impedance. Under this configuration, the
anomalous reflection behavior of the RIS can be mathematically described by a diagonal scattering matrix
W c CV*N defined:

W = diag(e V1, eIz e7IVN), (25)

where a generic ¢, represents the phase shift introduced by the n-th element of the RIS. These phase shifts
are designed such that the reflected signals from all elements combine coherently in the desired direction, thus
enhancing the beamforming performance.

Interference

\%i)
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M 2 RIS W
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Following the model exploited in [26], and assuming the RIS elements distributed along the x-y plane, the
phase shift of an element located at position (ny, ny) can be computed as:

27 ny dy 2mnydy

’l/Jnx,ny(@incY eref) = - 3\ (Uy(@inc) + Uy(@ref)): (26)

where Oinc = (finc, dinc) and Orer = (ref, brer)! denote the angles of incidence and reflection, respectively. The
parameters d, and d, indicate the inter-element spacing along the x and y directions, X the wavelength, and
for convenience, the parameters u(©) are defined as:

+ (Ux(einc) + Ux(eref)) -

* u,(©) = sin(f)cos(p);
* u,(0©) = sin(0)sin(¢).

Based on this phase-shift model, which depends on the angles of incidence and reflection, it is possible to
precompute a codebook containing vectors of phase shifts. The RIS can then be configured in real time
by selecting the appropriate phase shift vector from the codebook, corresponding to the desired steering
directions.

However, the number of RIS elements, N, is typically in the order of thousands to mitigate the severe path loss
typically associated with THz frequency propagation. This requirement imposes a significant computational
burden due to the complexity of simulating RISs with thousands of elements. To address this challenge, the RIS
model described above can be extended using the approximation proposed in [27], and this allows to balance
modeling accuracy and computational efficiency. Specifically, the RIS surface is partitioned into tiles. Each
tile aggregates a group of multiple adjacent elements, and its overall reflection characteristics, both amplitude
and phase, are modeled based on the number of constituent elements. This physics-based approximation
captures the collective behavior of the elements, enabling scalable simulations of the real-time RIS-assisted
THz communication systems, as discussed in Section 5.3, while maintaining a reasonable trade-off between
simulation model fidelity and complexity.

"Assuming the conventional spherical coordinate system, the azimuth and elevation angles are defined as: ¢ € [0, 2r)
and 0 € [0, ), respectively.
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4 Enhanced procedures for exploitation of smart prop-
agation environments in industrial ecosystems

In this section, we present enhanced algorithms and procedures for exploiting smart propagation environments
in THz-based industrial scenarios, including channel estimation, beam focusing, mitigation of RF impairments
in the presence of RISs, as well as an analysis of theoretical performance enabled by sensing, RIS and MIMO
technologies, both in far and near fields.

4.1 Estimation schemes for RIS-based THz channels

As the RIS size increases and the wavelength decreases, the Fraunhofer distance [28], which serves as the
boundary between the radiative near-field (NF) and far-field (FF) regions, significantly expands in RIS-aided
THz communication systems. As a result, both the UE and the BS are highly likely to reside within the radiative
NF region of the RIS. In this region, the electromagnetic wavefront exhibits a spherical curvature, leading to
spherical phase variations across the elements of RIS. These variations must be characterized jointly by the
angle and distance between the RIS and the point source, fundamentally altering the channel propagation
characteristics. Therefore, it is necessary to re-evaluate the applicability of conventional FF channel estimation
methods in NF scenarios.

More critically, as the physical dimensions of the RIS grow, the system becomes more vulnerable to EMI.
Such interference may originate from natural phenomena, such as atmospheric noise [29], or be caused by
intentional or incidental human-generated sources, including signals directed to other users [30] or radiation
from power lines [29]. However, in existing studies on RIS-aided NF channel estimation [31-33], the impact of
such inevitable EMI is often overlooked.

To address the above challenges in RIS-aided THz wireless communications, this part extends the Linear
MMSE (LMMSE) estimator and the Alternating Optimization (AO) strategy originally proposed in [34] to a
scenario where the UE, BS, and an interference source are all located within the NF region of the RIS. In this
setting, the UE signal reaches the RIS via a NF LoS path with a narrow solid angular spread, and is reflected
to the BS through another similarly NF LoS path, while EMI at the RIS is also reflected toward the BS. The
UE-RIS and RIS-BS channels, along with the EMI, are jointly characterized by the distances and Direction
of Arrivals (DoAs) from the UE, BS, and interference source to the RIS. Distinct from the FF assumptions
in prior work [34], we demonstrate that the aforementioned algorithms can only operate effectively under NF
conditions when accurate NF channel and EMI statistics are incorporated. Based on these NF statistical
properties, we estimate the uplink cascaded channel using the LMMSE estimator from [34], and optimize
the RIS phase-shifts via the corresponding AO-based iterative algorithm. Simulation results in the THz band
confirm the necessity of employing NF statistical knowledge in this setting and show that the proposed NF-
aware LMMSE approach significantly outperforms existing benchmark schemes in terms of Normalized Mean
Square Error (NMSE).

4.1.1 Pilot transmission

We consider a system operating under a communication protocol that allocates = channel uses for uplink
channel estimation before data transmission begins. The training sequence consists entirely of ones. Let
¢(i) € CN denote the vector containing the adjustable phase-shifts {¢,(i) € [0,27);n = 1,..., N} applied by
the XL-RIS during the i-th channel use. Consequently, the training signals at the XL-RIS can be expressed
as

Yris(i) = Vtrh + e(i), (27)
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where p' is the power of the training signal, and e(/) is the additive EMI to h. After RIS reflection, the training
signal received by the m-th BS element is expressed as

Ym(i) = \//F(ﬁ(i)-rxm + Wi (i) + zm (i), (28)

where

Win(i) = (1) (&m © €(7)) (29)

is the EMI reflected from the RIS to the BS, and z,(i) ~ N¢(0, 02) is the additive white Gaussian noise. It is
important to note that the term w,,,(/) is influenced by the RIS configuration.

By collecting all the training signals received at the m-th BS element across 7 channel uses during the training
phase, we construct the vector y* = [y (1), ..., y¥(7)]T € C™, which can be expressed as

Y= VO X, + W+ 2, (30)
where
o, =[p(1), $(2).-+ B(7)]" € CT, (31)
W = [Wn(1), ..., wn(7)]" and z¥, = [z,(1), ..., zn(7)]". Accordingly, the vector y§s = ytr', ... ,yf\j,T]T € CMr,
which collects the signals received at the BS array during the training phase, can be expressed as
Y8s = VP " Ou-x + w4z (32)
with
Py =Iy P, (33)

T T
and x =[x}, ..., xL|T € CMN, wt = [wiT . wt,']T e CM"and 2" = [zF ", ..., 2%, |7 € CM7.

Considering that the RIS can acquire statistical information of the channels and EMI through its sensing mode
[35], we assume that the BS has knowledge of the correlation matrices R, = E{xx"} and R" = %]E{w“(w”)H}.
These are given by [34]

R: =Ry @ (Rg, ©Rp) =Ry @R, (34)
and
Rl = Rg @ (®-R,@7) ©1.), (35)
where we define
R.=R,, ©R, c CV*N (36)
and
R, = R;, ®R. € CN¥N (37)

for later use.

4.1.2 Linear MMSE estimator

The LMMSE estimate of x based on the observation ygs can be computed using the statistics provided in (34)
and (35), as expressed by

1
N7

ﬁ:

R.®}. (RT) " yls, (38)
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where R} = E{yBs(yBs) } is given by

2

R = &y, R Pl + p—Rtr + p—IMT (39)
Then, the correlation matrix of the estimation error x = x — x is given by
Rs = E{%&"} = R, — R.®}},, (RY) ™ ®y.R,. (40)
Derived from (40), the Mean Square Error (MSE) of the LMMSE estimator can be expressed as
E(®,) =tr {Rg} =tr {RX ~ R0, (RY)™ thTRX} , (41)

which solely depends on @, as the channel statistics are assumed to be constant and provided.

4.1.3 XL-RIS phase-shift optimization

From (41), the MSE is solely determined by ®r. To minimize the estimation error, we can leverage its depen-
dence on @7 and optimize the MSE by solving the following problem

Jnin, &x(®-) (42)
where the feasible set is defined as
F={b, c CN||[®,]in] = 1;Vi,n}, (43)

which reflects the fact that the RIS is a passive element and thus its coefficients must have unit modulus.

The optimization problem in (42) is not convex in ®.., and solving it requires optimization over large matrices.
To address this, we reformulate (41) as

gX(d)T) =1tr {Rx - A(¢T)¢MTRX} ) (44)
where A(®.) is defined as
A(®,) = R.®}, (RY) ™. (45)

Moreover, we introduce a simplifying assumption by neglecting the dependence of A(®..) on ®... Consequently,
the objective function in (42) can be rewritten as

gx(q)r) - gx(,\r ¢‘r): (46)

treating A and ®.. as independent variables. Under this assumption, we can solve (42) by employing an AO
approach, which iteratively optimizes A and ®.. in an alternating fashion.

Specifically, we propose a two-step iterative algorithm in which &, (A, ®..) is optimized alternately with respect

to A and @... Let A and ¢(Tk) represent the values obtained at iteration k. At iteration k + 1, the following
steps are taken:

1. Having fixed the value of .. = ¢(Tk), we minimize (46) by computing A<t as A(®.) in (45). This step
involves unconstrained optimization, directly applying the MSE minimization;

2. Fixing A = Ak+1)_the MSE is now expressed as
E«(N, ®;) =tr {ARYA" — 2R [Ady,R,] + R, }
2 2
=t {/\ (chTRch';M + ZeRYy 4 UglMT) A — Ay, R, — ROY AM RX} . (47)
p p

In (47), E«(N, @) becomes a convex function with respect to ®... Thus, the RIS phase-shift matrix can
be computed by solving the following minimization problem

¢(k+l) = arg m|n &y ( AKD @ ) (48)
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Concerning the convergence of this AO algorithm, it can be observed that since the MSE is minimized in both
steps, the MSE either decreases or stabilizes at each iteration. As the MSE is always a positive quantity, this
iterative process will inevitably converge to a local optimum.

Although the objective function in (48) is convex with respect to ®.., the optimization problem remains non-
convex due to the unitary modulus constraint. Since projecting any solution onto the feasible set F is straight-
forward, this type of constraint naturally leads to the use of the Projected Gradient (PG) method. In doing this,
an additional auxiliary loop variable, W(®) | is introduced to represent the intermediate RIS coefficients during
the gradient descent process. To apply the PG method, it is necessary to compute the gradient and Hessian
of (47) with respect to ®.., which are derived and detailed in [34]. Subsequently, the PG algorithm is initialized
by setting w(® = ®% which corresponds to the last solution obtained from the AO algorithm. The two steps
involved in applying the PG method are:

1. The unconstrained RIS coefficient matrix is obtained by solving the unconstrained optimization problem
using gradient descent. By utilizing the gradient V&, (A, W()), the update for W() is performed as

follows:
[\II(SH)] = {w(”] —a{D@v‘.,gx (/\,w@))} , (49)

where D) € C™V*7N js an Hermitian positive definite matrix, and the value of A is derived from the
outcome of the preceding AO solution. The matrix obtained upon convergence is denoted as W*.

2. Project w* onto F by normalizing the amplitude of each entry to unity, that is,
¢5_k+1) — ejé\ll*_ (50)

Gradient descent is inherently iterative, and (49) may require multiple iterations to converge. Consequently,
both the convergence rate and the selection of the step size « are crucial factors in the performance of such
iterative methods. Specifically, when the Hessian of the objective function is available, we can select

D®) = (vﬁ,gx (/\, w<5>))_1. (51)

In this case, the iterative algorithm is referred to as Newton’s method, and has the great advantage of being
able to find the minimum of a quadratic function as (47) with very few iterations [36]. However, considering the
potentially high computational complexity associated with inverting the 7N x 7N Hessian matrix, a simplified
variant of Newton’s method can be employed. This approximation is valid when the diagonal elements of the
Hessian are all strictly positive. In this simplified approach, the Hessian is approximated by the elements on its

main diagonal, resulting in
—1

D) — (vﬁ,gx (/\, w<5>) ® |T,V) . (52)
In this specific case, the update rule for the diagonally scaled steepest descent method takes the form
o [Vwéilip_1yrii
{w(m)} :[ws)}_ S Voo _ (53)
i hn [VWSX](nfl)T+i,(nfl)‘r+i

By applying the AO algorithm in the outer loop and the PG algorithm in the inner loop, the optimal ®qy with
the minimum estimation error can be obtained. This procedure relies solely on the known spatial correlation
matrices R, and RY, without requiring any online information. Therefore, the RIS phase-shifts for the training
phase can be designed offline without consuming any channel uses.

4.1.4 Near-field channel estimation performance analysis

We now evaluate the performance of the proposed LMMSE estimator with AO in terms of the NMSE. For
simplicity, we consider an RIS-aided Single-Input-Single-Output (SISO) system, i.e., My = My, = 1, except
for Figure 6 (b). Unless stated otherwise, the proposed system operates at f, = 0.3 THz, corresponding to
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Table 2: The parameter used for the near-field simulations.

Wavelength Ac = 0.001m (f. = 0.3 THz)
Number of RIS elements N=12x2
Inter-element spacing dy = 10\
SNR 0dB
SIR 5dB
Pilot length 7 =rank{Rg, ® Ry} =15

Location of UE relative to XL-RIS  r, =15.0m ¢, =70.0° 6, = —20.0°
Location of BS relative to XL-RIS  r, =20.0m ¢, = —60.0° 6, = —30.0°
Location of EMI relative to XL-RIS r. =25.0m ¢, =-10.0° 6, =20.0°

Elevation angular spread of h Ny, =1°
Elevation angular spread of g Dy, =1°
Elevation angular spread of EMI Ny, =3°

A = 1mm. The RIS is equipped with a 12 x 2 UPA with dy = 10A. This configuration results in a Fraunhofer
distance R = 29.6m. The UE and BS are positioned at (15m,70°,—20°) and (20 m,—60°,—30°) relative to the
RIS, respectively, and both are located within the NF region of the RIS. The random EMI is generated at
(25m,—10°,20°) relative to the RIS. Other simulation parameters are provided in Table 2.

In this part, we compare three different methods:

1. The first baseline method is the Reduced-Space Least-Squares (RS-LS) estimator given by [37, Eq. (13)],
which is labeled as ‘RS-LS’ in the figures. The optimal RIS phase-shift for this estimator can be designed
according to [38, Eq. (26)]. This phase-shift is also used as the initial RIS configuration ¢ in AO algo-
rithm;

2. The second is the proposed LMMSE estimator with the AO strategy, labeled as ‘LMMSE’ in the figures;

3. To evaluate the gain introduced by the AO strategy, we also include a baseline LMMSE estimator that
directly uses tD(TO) without executing the AO algorithm. This estimator is labeled as ‘LMMSE-®,’ in the
figures.

Moreover, in the proposed AO approach, we set « = 0.5 and ¢ = 1073, To accelerate the simulation, the
diagonally scaled steepest descent method is applied only once per PG loop.

Figure 6(a) and Figure 6(b) illustrate the NMSE of various estimators as a function of SNR in the SISO and
Multiple-Input-Single-Output (MISO) scenarios, respectively. In these figures, the pilot length is set to 7 =
rank{R,, ©®R} = 15, which corresponds to the minimum number of pilots required by the RS-LS estimator [38].
In the MISO case, the BS is equipped with a 2 x 1 antenna with dy;, = A = 1 mm. For comparison, we also
include the result of the proposed estimator in the interference-free case (i.e., SIR = c0), denoted with the
suffix ‘-w/o-EMT’. It can be observed that the NMSE of all estimators decreases with increasing SNR. In
the presence of EMI, it can be clearly observed that when the SNR is lower than the Signal-to-Interference
Ratio (SIR), the NMSE of all estimators consistently improves with increasing SNR. However, when SNR >
SIR, the performance of the estimators tends to saturate, indicating that the SIR becomes the dominant factor
limiting performance in this regime. Moreover, although both ‘RS-LS’ and ‘LMMSE-®,’ use the same RIS
configuration, ‘LMMSE-®,’ achieves approximately a 5-dB gain over ‘RS-LS’ in Figure 6(a) due to the LMMSE
criterion. More importantly, the proposed LMMSE estimator consistently outperforms ‘LMMSE-®,’ by at least
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Figure 6: The NMSE vs. SNR for different estimators.

3.3dB, demonstrating the effectiveness of the AO algorithm. Comparing Figure 6(a) and Figure 6(b), the
performance of all estimators in the MISO case closely aligns with that observed in the SISO case. However,
due to the increased dimensionality of the channel to be estimated, the overall performance of the estimators
is degraded compared to the SISO scenario. Subsequently, Figure 6(c) illustrates the performance of various
estimators in the SISO case at f; = 3THz. To ensure that the UE, BS, and EMI all lie within the NF region
of the RIS, the number of RIS elements is increased to N = 36 x 4. Under this setting, all estimators exhibit
performance trends consistent with those observed in Figure6(a), thereby confirming the broad applicability of
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Figure 9: The NMSE vs. Ny for different estimators.

the proposed method in the THz band.

Figure 7 shows the NMSE as a function of SIR when SNR = 0dB. As expected, the NMSE of all estima-
tors decreases as the SIR increases. Besides, consistent with earlier observations, the proposed LMMSE
estimator achieves the best performance and gradually approaches the ‘LMMSE-w/o-EMI’ baseline as SIR

increases.

Figure 8 presents the NMSE as a function of the pilot length 7 at SNR = 0dB and SIR = 5dB. The range of 7
spans from 7 = rank{R,, ® Ry} =15 to N. As expected, the performance of all estimators naturally improves
with increasing 7. Besides, the proposed LMMSE estimator consistently achieves superior performance, offer-
ing stable gains of about 10.5dB and 6.2dB over ‘RS-LS’ and ‘LMMSE-®’, respectively.
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Figure 9 depicts the NMSE as a function of the number of RIS elements N at SNR = 0dB and SIR = 5dB,
where Ny is fixed at 12, while Ny, varies from 2 to 12. Note that increasing N also increases the required pilot
length for channel estimation. However, the impact of increasing N on the cascaded channel rank, i.e., the
effective channel dimension, is limited. Therefore, the dominant effect of a larger RIS is the enhancement of
the RIS gain, which benefits near-field channel estimation. Accordingly, the NMSE of all estimators decreases
as N increases. It is also worth noting that the performance gap between ‘LMMSE’ and both ‘RS-LS’ and
‘LMMSE-®’ widens with increasing N.
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4.2 LoS-MIMO capacity evaluation in RIS-enhanced factory environments

When a MIMO system is operated in its near-field under LoS conditions, the spherical model of wave propaga-
tion enables the creation of independent channel paths, rendering the corresponding LoS-MIMO channel ma-
trix to have a rank larger than one. This phenomenon can be effectively used for facilitating spatial multiplexing
transmission under LoS to a single user, yielding an increase of its communication capacity. In RIS-enhanced
environments, where the link between a BS and a UE is established through the reflection of a LoS path via a
RIS, the size of the RIS effectively determines the degree of spatial multiplexing that can be supported for this
link. Transmitter and receiver both need to be equipped with multiple antennas to allow for the separation of
the spatially multiplexed beams and for precisely shaping the beam direction towards the RIS.

The solution for beam design and configuration of the RIS weights to enable high-rank LoS-MIMO transmission
in RIS-enhanced communication links has been proposed in [39]. In TIMES project, the approach proposed
therein has been reused to study the practically achievable capacity of a UE moving through a factory hall
and being served by a BS through a RIS-enhanced communication link. Initially, the capacity for different
RIS deployment setups has been evaluated assuming ideal conditions (i.e., continuous phase shifts for the
RIS weights, ideal channel knowledge), where results indicate a high potential to increase the link capacity by
using the strongest eigenchannels of the LoS-MIMO channel. However, analyzing the sensitivity with respect
to practical impairments, such as displacement errors and cross-talk between adjacent RISs, reveals that these
gains quickly deteriorate, in particular if eigenchannels of higher order are used.

4.2.1 Evaluation scenario and system model

The scenario under study is depicted in Figure 10. A cuboid factory hall is assumed of width W = 20 m, length
L = 30 m and height H = 10 m. The (x, y, z) coordinate system is defined as shown in the figure with its
origin in the (lower) top left corner of the hall. The BS is mounted at a height h = 8 m, i.e., 2 meters below
the ceiling, in the center of the hall at coordinates (15, 10, 8). Two RISs are mounted to the left wall at height
h = 4 m with equal distance d to the x-coordinate of the BS, given by the coordinates (15 + d, 0,4). Finally,
a UE with height h = 1 m centered in the hall moves along the x-axis from one end of the hall to the other,
i.e., (x,10,1) with x € [0,30]. BS, UE and RIS are assumed to use a UPA with K antennas (BS, UE) and N
antennas (RIS), respectively, where N > K. The UPA is assumed to be centered at the respective location
of the communication node, ant its orientation is assumed perpendicular to the y/z plane. While the UPAs at
the RIS are planar with the wall they are mounted at, the UPAs at BS and UE are assumed to be tilted by 45°
towards the RIS.

The UE is served by LoS links via RIS 1 (the right one from BS perspective) as long as it moves along the x-axis
in the range x € [0, 15], while it is served via RIS 2 thereafter, x € [15, 30]. In the initial investigations, possible
cross-talk from the other RIS not used for serving the UE is ignored, whereas later the potential power from the
interfering RIS will be analyzed. The near-field channels between RIS and BS and RIS and UE, respectively,
are modelled according to the free-space propagation model, yielding for channel coefficient between the n-th
RIS element and the k-th element at the BS (or UE, respectively):

A 27
B = i~ d, 54
K= amd, P (J 3 d k> (54)

with d, the distance between antenna element n at the RIS and k at the BS/UE. For calculating the capacity
achievable by spatial multiplexing over the RIS-enhanced LoS channels, we reuse the solution proposed in [39].
Therein, the authors have shown that the complex unit-amplitude RIS weights w,, achieving the capacity of the
overall LoS-MIMO channel are obtained for each RIS element n by the product of two phase factors, which
represent the phase shift between that RIS element and the center of the BS UPA, and the phase shift between
that RIS element and the center of the UE UPA, respectively:

2 2
= exp (1570 ) e (57 05 (55)
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Figure 10: RIS-enhanced deployment scenario in factory hall

These RIS weights can be stacked into a diagonal (unitary) matrix ® of dimension N x N. Similarly, by stacking
the channel coefficients for the BS-RIS link into a N x K matrix Hg and those for the RIS-UE link intoa K x N
matrix Hy, the effective channel for the RIS-enhanced link can be given as

H.r = Hy®Hp (56)

Since this effective channel has a rank larger one when BS and UE are in the near-field of RIS, it is well
known that the optimum transmission scheme is the singular value decomposition (SVD)-based precoding,
which enables to use the eigenchannels for transmission. The authors in [39] have shown that the left and right
singular vectors of H. to be used as the pre- and decoders for Eigenchannel transmission are identical to the
left singular vector of Hy and the right singular vector of Hg, respectively. Further, they have shown that each
singular value of H.s is identical to the product of the corresponding singular values of Hy and Hg.

To achieve the maximum capacity C, optimal power distribution over the eigenchannels of H.#+ according to the
Waterfilling algorithm is mandated. However, the authors have further shown that, as long as the magnitudes
of the eigenchannels o; of the L channels selected for transmission, i € {1, ..., L}, do not differ by a factor larger
than 10, the difference to the much simpler equal power allocation scheme is insignificant. For the capacity
evaluations carried out here, we have therefore selected the number of eigenchannels achieving the highest
capacity under the equal power allocation scheme, where the above requirement is safely satisfied:

- maxz og (1+ 102, (57)

where Py and N is the transmit power and noise power, respectively.

4.2.2 Capacity gains under ideal assumptions

The system evaluation is carried out for a carrier frequency f = 120 GHz, yielding a wavelength A = 2.5 mm.
The assumed bandwidth is B = 10® Hz = 100 MHz, which leads to a noise power Ny = —174 + 80 = —94
dBm. The transmit power is set to P, = 20 dBm. At the BS and the UE, an UPA with 8 x 8 antennas is
assumed with an antenna spacing of 8, while the RIS is assumed to have an UPA with 64 x 64 RIS elements
with a spacing of 2\. Note that the choice of these parameters (including the carrier frequency) is mainly
due to complexity issues. As a matter of fact, higher frequencies can lead to a reduced spacing between
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the elements, increasing the RIS size (in terms of the number of RIS elements) and its related complexity,
but without achieving a significant benefit in terms of performance. Hence, the carrier frequency has been
chosen at the lower end of the sub-THz range, as it allows for a general analysis of the near-field effects of
LoS-MIMO in the given scenario while selecting parameters of reasonable magnitude for the RIS configuration,
thus keeping the complexity in balance. For supporting higher frequencies, the RIS configuration needs to be
scaled up accordingly to maintain the identical near-field range. Finally, the bandwidth has been selected to
ensure achieving a SNR for the given signal power budget that is high enough for enabling the activation of
additional eigenchannels when the UE moves closer to the RIS.

Capacity evaluation results for the UE moving along the x-axis in the center of the factory hall are shown
in Figure 11 (a). As the baseline scenario, a direct communication between BS and UE (i.e, without RIS
enhancements) is considered, where the tilting of the UPAs at BS and UE is set to 90° (i.e., parallel to the
ceiling) to align their orientation with the direct LoS link between the two. In this case, the channel matrix for
this LoS link has rank one, i.e., only one Eigenchannel, and the corresponding plot in the figure exhibits the
lowest capacity. When the RIS-enhanced deployment is considered, a significant boost of the capacity can
be observed, which reaches gains up to 50% compared to the baseline. This capacity boost is attributed to a
substantially increased number of activated eigenchannels in the LoS-MIMO link, as shown in Figure 11 (b),
where it is seen that up to 5 eigenchannels are activated. The different placements of the RIS considered in
Figure 11, characterized by the distance d to the BS, reveal that by placing the RIS close to the BS, a high
capacity — supported by a large number of activated eigenchannels — can be achieved close to the center of
the hall, while it drops steeply when the UE moves towards the corners. Opposed to that, a placement of
the RIS further away from the BS exhibits a more balanced capacity distribution in the factory hall, which is
supported by a constant number of activated eigenchannels; the average and peak capacity is significantly
lowered compared to the former case, though.

LOS-MIMO capacity (bit/s/Hz)

’ === 2RISd=Tm \
s — - 2RISd=6m N
12y — 2 RISd =3 m N

—RISd=3m
————— 2RISd=Tm
———1RISd=0m

Number of Eigenchannels used

2RISd=2m 1
— — — 1RISd=0m
BS only (UPA 90° tited)

0 5 10 15 20 25 30 0 5 10 15 20 25 30
UE position along x-axis (m) UE position aleng x-axis (m)

(a) LoS-MIMO capacity (b) Number of activated eigenchannels

Figure 11: (a) LoS-MIMO capacity and (b) number of used eigenchannels vs. UE position for different RIS
placements.

4.2.3 Sensitivity analysis

For the sensitivity analysis, the RIS placement is fixed to d = 3 m. The focus is first turned on the sensitivity of
the Eigenvectors used for beamforming at UE and BS with respect to UE displacements in x, y and z direction.
In particular, it is assumed that these beamformers are determined as the left singular vectors u; of the channel
Hy between RIS and the UE located at a pre-defined position, but the actual channel Hy used for transmission

101096307 - TIMES BGSNS 31 0of 110



%N
@
D4.4 - Deliverable on multi-goal mesh network optimization and NS ¥
exploitation of smart propagation environments - v1.0 TIMcS

40,

is then calculated for the UE position with an offset in x, y or z direction. Since the beamformers at the BS are
determined as the right singular vectors v; of the channel Hg between RIS and BS, these are not affected by
the UE displacement. The effective channel thus becomes

Aer = Ay®H;. (58)

The useful signal power P; of the i-th Eigenchannel and the interference power Z; of the other right singular
vectors v; distorting the i-th Eigenchannel then amount to

Pi = Po/Llluf'Acqv;|? (59)
L
Z = Po/L Y [JufAepvi|?. (60)
J=1 A

The SINR for the i-th Eigenchannel then yields
UE displacement according to

z-f/vo’ which allows to calculate the capacity achievable under

L
Cdisplacement = Iz; log (1 + Z _T N0> . (61)
The drop in capacity for UE displacements of different offsets is shown in Figure 12(a). We have investigated
displacements in x, y and z direction by an offset of 2 cm = 8\ and 5 cm = 20), respectively. It is observed
that the lowest sensitivity is for offsets in the y-direction, which is the direction perpendicular to the RIS. The
sensitivity for offsets in x and z direction, i.e. parallel to the RIS surface, is significantly more pronounced,
though: It is observed that a displacement of 5 cm in x-direction yields a capacity drop by 20% close to the
edges and by 50% in the worst case. The strongest capacity drop is observed at the x-positions where the
RISes are located (x=12 m and x=18 m), i.e, where the LoS link between UE and RIS is closest to each RIS’
perpendicular. Moreover, we observe from the plots that the most pronounced drops in capacity appear in
the region with the highest number of activated eigenchannels; compare with Figure 11 (b). Hence, we also
plotted for the maximum displacement considered the case where the total number of activated eigenchannels
is limited to 3. From those plots, it can be observed that the capacity drops smoothen considerably, which sug-
gests that reducing the number of eigenchannels in case of larger expected displacement is a useful approach
to alleviate the induced capacity drop.

Up to now, it has been assumed that the UE is served via a single selected RIS, while the second RIS does not
create any interference. However, this assumption holds true only if the second RIS can be switched off?. If it
is not (which should be assumed as the common case now), then fractions of the power used to feed the first
RIS by the BS precoders may be received at the second RIS, which could then create additional interference
in the communication environment. This situation has been analyzed in Figure 12(b): While moving the UE
in the range x € [0,15] m, the UE is connected to RIS1 and will support up to 5 eigenchannels, as shown
above. The figure depicts the power of each precoding vector used to create the Eigenchannel (subject to the
equal transmit power allocation from above) that is received at RIS1 and the second RIS2. The received power
is normalized to the one related to the strongest Eigenchannel received at RIS1, yielding a power level of 0
dB for the latter. It can be observed that for the precoding vector related to the strongest Eigenchannel, the
power received by RIS2 lies more than 20 dB below the power level at RIS1, and hence it can be considered
negligible. However, for the eigenchannels following, it is observed that while their power received at RIS1
decreases, their power received at RIS2 increases, diminishing this power gap, until both received powers
achieve a similar level, as observed for the 5th eigenchannel. This finding underscores a severe challenge
for the application of high-rank LoS-MIMO communication via RISes in practice: As long as the interference
created by the power received at the second RIS cannot be mitigated otherwise, only few of the available
eigenchannels may practically be used.

2RIS can be realized based on different technologies. There are indeed some technologies used in FR1 and FR2 that
allow switching off the RIS elements completely; e.g., CMOS switches can be designed to disconnect the RIS elements or
route signals to absorptive loads, effectively turning the RIS off.
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Figure 12: Sensitivity analysis: (a) Capacity drop due to UE displacements and (b) RIS cross-talk.
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4.3 Solutions for mitigation of RF impairments on RIS-based communi-
cation links

This section introduces a transmit power adaptation approach to improve the performance of a RIS assisted
communication link at THz frequencies, where the transmitter and the RIS are respectively impaired by PA non-
linearities and phase errors at the RIS due to phase quantization at each of the RIS elements. Although one
could, for instance, partially mitigate the considered impairments by e.g. applying a pre-distortion algorithm to
linearize the output power at the transmitter, it was concluded that pre-distortion at such high frequencies is a
challenging task in practice. Therefore, as we will show throughout this section, opting for a transmit power con-
trol approach without resorting to pre-distortion can provide considerable communication performance gains if
transmit power values are wisely chosen.

4.3.1 System Model

The system model is comprised of a Node A that transmits information to Node B through a RIS due to the
absence of a direct link. A single carrier waveform is assumed to be transmitted®. Given a QAM transmission
system, the ideal transmitted M x 1 data vector has the following form

x = [ae®, . aye®] (62)

where a,,, m € {1, ..., Q} belongs to a set of amplitudes specific to a certain modulation type, and ¢,, repre-
sents the possible phase values. For instance, for a 4-QAM modulated signal, @ = 1 while for 16-QAM, Q = 3.
It is also assumed that

trace (xx")
— =1 (63)

where M = card(x). When PA non-linearity is present, the modified tranmsitted vector after the PA is modeled
by applying

)'2 = |:FAMAM(5ao)ej(FAMPM(530)+¢O)' o (64)
Famam (53M—1)ei(FAMPM(éaM*I)+¢M,1)} T

where § € [0, dmax] is @ control parameter that sets the desired transmission power to a certain value of interest,
dmax IS @ maximum power control limit parameter, Famam(x) is the amplitude-to-amplitude transfer function, and
Fampm(x) is the amplitude-to-phase modulation transfer function, which are , e.g., defined as in the equation
set defined in (5).

After passing through the RIS assisted channel, it can be shown that the received signal maybe then written
as

Q-1
f(m) = Vay | Otttz (m) + v(m), (65)
n=0

where « is the path gain between Node A and Node B which was derived in [41], adopted in Deliverable 4.3 [3],
and may be written as

2
o= 8‘;?( w ) cos(v)), (66)

dardrB

3In this deliverable, we adopt a single-carrier waveform where we align with the THz single carrier mode (THz-SC PHY)
in IEEE Std 802.15.3-2023 intended for high data rate communications [40]. 4, 16 and 64-QAM modulation orders are
proposed.
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where /, w are the length and width of the reflecting element at the RIS, dag and dgg are the separation
distances between Node A and the RIS, and the RIS and Node B, respectively, G4 and Gg represent the gains
of the transmitter and receiver antennas, respectively, and ¢ is the angle of incidence of the reflecting wave. In
(65), 0,., is the phase of the wave from Node A to the n*" RIS reflecting element, and 6,,, is the phase of the
wave from the n*" RIS reflecting element to Node B, and w,, is the weight applied at the RIS to compensate for
the phases at the n®" RIS reflecting element.

At Node B, the receiver attempts to detect the transmitted symbol. Since the RIS accounts for aligning the
phases at the receiver (Node B), it only applies a gain control to rectify the concatenated propagation loss.
Thus, Node B applies

t(m) = =r(m), 67

(m) 5 (m) (67)

( Z ik m)> (68)

where = Qv Pa, P = i , €; represents the phase error resulting from the limited phase quantization at the

RIS elements.

4.3.2 Performance Analysis
In this section, we carry out an analysis to quantify the performance of a RIS assisted communication link

impaired by phase errors resulting from phase quantization and PA nonlinearities. The analysis is carried out
by deriving the MSE at Node B.

The MSE may be calculated by applying

€é%E{(?—x)H(f—x)}. (69)

2
} + 5—"/2'03, (70)

where this result was found by adopting the Additive White Gaussian Noise (AWGN) properties of the vector
v. Moreover, we need to calculate

Mo [
E {trace(xt"’)} = N {Ze’e’}ng, (71)

where Px £ %"x. To perform the above calculations, we use the circular moment result of a continuous uniform
random variable of the phase quantization error as specified in Section 3.1

E.{e°} = sinc (%) : (72)

Thus, exploiting the linearity of the expectation operator, we can write

Towards deriving (69), the following calculations are needed

Q-1

e

i=0

E {trace(#")} = (/;i {

E {trace(xt")} = yﬁsinc (%) Psx. (73)

Moreover, the expectation in (70) can be calculated by applying

Q-1
E
i=0

S e

2 Q-1Q-
} =+ ZE{eJen}E{eJEm} = Q+Q(Q-1)sinc? (7)., (74)

n=0 m=0
n#m
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Figure 13: MSE vs. P for different quantization levels L.

where this result was achievable due to the assumption that the phase quantization errors at each of the RIS
elements are independent and identically distributed. We then can re-write (73) as

E {trace(##")} = % (1 +(Q = 1)sinc? (%)) + %03. (75)

Using the results in (75) and (74), and substituting them in (69), it can be shown that

(1 Q-1 /7 I, L . 4 .
E‘<o+ g " <2L)>+620"_ﬁsmc(L)2m{P )+ 1 (76)

The above expression will be tested using Monte Carlo simulations in the next Section.

4.3.3 Adaptive Transmit Power Control

As the transmitter (Node A) is impaired with PA non-linearity and the RIS is limited by its phase quantization
capability, then herein, we can show how Node A, Node B and the RIS can jointly coordinate to minimize a
certain performance metric, ¢ in this specific case, that reflects the quantization limitation at the RIS and the PA
non-linearity. To justify the aim behind using adaptive power control and to verify the accuracy of the derived
expression in (76), we first start by depicting Figure 13, where it presents the analytical vs. simulated results of
the MSE as a function of P, and for different phase quantization levels L. Unless stated otherwise, the adopted
simulation parameters are listed in Table 3.

The first observation is that as L is increased, the MSE is lower due to the more accurate tuning of the phases
at each of the reflecting RIS elements. Moreover, for each quantization level L, and for small P, the MSE is
relatively higher due to the overall effect of the channel, i.e. not meeting the link budget requirements. As
P is increased, the MSE keeps improving (decreasing) until it starts degenerating again, and this time due
to distortions introduced by PA nonlinearities. One can also notice the higher dependency of e on P as L is
increased. This can be explained by the improved effective channel when the RIS approaches almost perfect
phase tuning, hence, increasing P becomes beneficial. However, when quantization is coarser, i.e. L = 2,
increasing P brings little improvement to the MSE.
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Table 3: Simulation parameters. The PA nonlinearity parameters are taken from [3]

Symbol Description Value
dar Distance between node A and RIS 50m

drB Distance between RIS and node B 50m

fe Carrier frequency 280 GHz
BW Signal bandwidth 2 GHz
Ga Antenna gain of node A 20dB
G Antenna gain of node B 20 dB

/ Length of the RIS element A2
o2 Noise power —80 dBm
) The wave’s angle of incidence 40°

Q Number of RIS elements 220

w Width of the RIS elements A/2

G Small signal gain (AMAM model) 7.913
p Smoothness factor (AMAM model) 1.132
Vsat Saturation voltage (AMAM model)  0.0674 V
A AMPM model parameter -20075
B AMPM model parameter 80.98
q AMPM model parameter 2.109
Q2 AMPM model parameter 31.45

Given this discussion, we aim at selecting the output power P such that ¢ is minimized, i.e.
argmine, (77)
s.tvpeR (78)

where R is the range of the PA input voltage (v;,) that the PA is characterized within. One way to solve the
above problem is to find the partial derivative

Oe

op =0 7o
and then solve for P. Since this is a complex task and the function can be seen to be convex for the adopted
range of output powers, we can simply use the analytical result and find the unique minimum of the function
to get P that minimized the MSE. The parameters used in Eq. (76), can be forwarded to the transmitter
to perform the above optimization. For instance, the receiver noise level o2 and 3 (can be estimated in the
channel estimation process at Node B) can be shared between the Nodes B and A, while Q and L can be
shared with Node A through a control communication channel between Node A and the RIS using a control
communication module at the RIS [42]. Figure 14 shows the effect of changing the dimensions of the RIS,
in this case the parameter Q and for L = 16. As can be seen form the results, it is clear that the MSE
overall increases when Q is decreased. Further, the optimal power transmission power increases as the Q
is decreased. This is obviously due to the decrease of the number of reflecting elements, and the system
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Figure 14: MSE vs. P for different sizes of the RIS Q. L = 16. Square labels indicate minimum MSE.
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Figure 15: MSE vs. P for different sizes of the RIS Q. L = 2. Square labels indicate minimum MSE.

affords relatively more errors caused by the transmitter PA to compensate for the lack of enough reflections
that improves the performance at the receiver. Moreover, we depict in Figure 15 the same MSE vs. P, but this
time for a lower L, namely L = 2. In this case, the same trends observed in Figure 14 can be deduced, but with
an increased overall MSE due to the lower quantization capability at the RIS. An important observation is that
the optimal transmit power does not significantly improve the MSE for different values of Q. The reason for this
behavior is that the system is overwhelmed by the quantization errors, reducing the gains obtained by varying
the transmit power.
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4.4 Near field sensing for theoretical estimation of target position and
speed

Unlike traditional far-field systems, where the planar wavefront assumptions dominate, near-field systems op-
erate in a regime where spherical wavefronts and spatial signal variations become prominent. These effects
are especially pronounced with the emergence of Electrically Large Aperture Arrays (ELAAS) , which promise
to push the boundaries of localization and sensing precision [43]. In this Section, we investigate the impact
of the adoption of ELAAs on the estimation of some parameters of interest for localization and sensing, in
particular target position (range and Angle of Arrival (AoA)) and speed. Specifically, a theoretical analysis is
performed, deriving the corresponding Cramér-Rao Lower Bounds (CRLBs) to highlight how system param-
eters, the propagation regime, and array geometry influence the estimation accuracy. In the following, two
cases are examined: the asymptotic CRLB derivation for target position estimation differentiating the analysis
between localization of an active UE and sensing of a passive target, in a condition for which the distance to
the UE/target is less than the array aperture; the performance analysis in terms of CRLB for velocity estimation
in the near field of the ELAA, that allows the estimation not only of the radial component, as in far field, but also
of the transverse one.

4.4.1 Asymptotic Behavior of Near-Field Localization and Sensing

The adoption of ELAAs introduces new challenges to be tackled. Specifically, a reevaluation of traditional
models and performance limits is needed. Indeed, the well-known path-loss scaling laws and the number
of available communication modes fail when the transmitter-receiver distance approaches the array size. Al-
though this phenomenon has been widely investigated for communication, it remains less understood in the
field of localization and sensing. In this section, we derive and evaluate the performance limits for range and
AoA estimation in terms of CRLB, to assess how the estimation limits change as traditional scaling laws are
no longer fulfilled.

System model Two cases are evaluated: (a) localization of a single-antenna UE using a BS equipped with
an ELAA of K elements; (b) sensing of a passive target using a Single Input Multiple Output (SIMO) monostatic
configuration at the BS, namely with a single transmitter and K receiving elements. The ELAA is arranged in
a uniform linear deployment and the antenna aperture is defined as De.. = (K — 1)d, where § is the antenna
spacing. The reference system is placed with the origin corresponding to the central element of the ELAA at
the BS, which is oriented along the x axis. Denote with p, = [xx, yx] " the position of the k-th receiving antenna
atthe BS, for k = —(K —1)/2,...,(K — 1)/2, so that yx = 0, Vk, and xo = 0. The position of the UE/target,
instead, is expressed in a polar coordinate system for convenience, as p = [, d] " where 6 denotes the angle
with respect to the broadside direction of the receiving ELAA (i.e., the AoA of the signal received at the BS),
and d denotes the distance between the UE/target and the central element of the receiving ELAA at the BS
(i.e., the reference antenna). We denote by dx = ||p — p«|| the distance between the k-th receiving antenna
and the UE/target

2 2x.sinf
dk—\/dQSin29+X,f—2Xkdsin0+d2c0529—d\/1—|—Z’;— Xk;m )

(80)

When considering case (a) of localization, the UE transmits an uplink data packet spanning N subcarriers of
an Orthogonal Frequency Division Multiplexing (OFDM) signal. On the other hand, when considering case
(b) of sensing, the central element of the BS transmits the OFDM signal. This signal is then reflected by
the target in position p, and all antenna elements of the BS receive the signal, as for the active localization
case (SIMO radar). The BS aims at estimating the distance d = ||p|| (i.e., the range) and the angle ¢ (i.e.,
the AoA) processing the signal received at its ELAA. After standard cyclic prefix removal and Fast Fourier
Transform (FFT) processing, the received signal for a given OFDM symbol, in complex baseband, can be
written as [44]

Fnk = Yn,k + Znk = \/ﬁxnﬁn,k e—j2ﬂ'fn7'kejtp + Zn,k (81)
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where P = Pr/N is the power allocated to each subcarrier, Pr is the total transmit power, and x, is the
data symbol (e.g., a pilot used for channel estimation and localization) transmitted in the n-th subcarrier with
E{|x?} =1, for n = —(N —1)/2,...,(N — 1)/2. Moreover, f, £ f. + nAf is the frequency associated with
the n-th subcarrier, Af is the subcarrier spacing (SCS), ¢ accounts for the phase synchronization mismatch
between the transmitter and the receiver, and 3, x are the channel scaling coefficients. The term 7, denotes
the time taken by the signal to travel between the UE and the k-th BS antenna (for localization) or between
the transmitting antenna, the target and the k-th BS antenna (for sensing). The term z, , denotes the AWGN,
with z, , ~ CN(0, o2). Assuming a small bandwidth, we have f, ~ £, and the channel scaling coefficients can
be considered constant on the different subcarriers, i.e., 8,«x = B« Vn. As a consequence, the SNR at the
k-th receiving antenna can be expressed as SNR, = Pj32/0? = a2 /0%, The channel scaling coefficients for
localization (a) and sensing (b) are given by the Friis laws in the active and passive case, that are, respec-
tively

GTGR>\2 2(sens) GTGR/\2)0

(4rdy)? g (47)® d2d?

where Gt and Gg are the transmitting and receiving antenna gains, A = c¢/f. is the wavelength, c is the speed
of light, and p is the RCS of the target. When d > D..., the channel coefficients can be considered almost
equal across the array, leading to 8, « = 5, Vn, k. For d < Dq.a, instead, this approximation is no longer valid.
Indeed, it is necessary to compute the path loss at each antenna element, because dj can change significantly
across the array aperture. Starting from (82) and using (80), the corresponding SNR at the k-th antenna can
be written for the two cases as

ﬁi(loc) _

(82)

SNRQOC): P G—;GR)\z : 1 _ SNRy (83)
(47)? d202 (1 N % B 2xk§in0) fi
2
SNR&sens):P GTGrA p 1 _ SNRy (84)

3 X2 X Sin
(47)° d*0? (1+dsz_¥) fi

where SNRy = PpB2/0? is the SNR at the reference antenna in the localization/sensing case and f, =

1+ Z—E — 2480l Thys, g2 = B2/f, and from (83) and (84) the resulting SNR is the scaled version of that
at the reference antenna. Moreover, once defined the SNR at the reference antenna, no differences are expe-
rienced between localization and sensing for the SNR scaling law across the array aperture. For what concerns
the time displacement parameter across the array 7, for localization (a) we have 7, = dk/c, while for sensing
(b) 7« = (d + dk)/c, considering the transmitter synchronized in time with the receiver. Notice that, for sensing
(b), we can incorporate the phase shift due to the forward path between the transmitting antenna and the target
within the common phase term . Therefore, hereafter we no longer make a distinction between localization
and sensing by considering always 7, = dx/c = dv/fi/c. Since the transmitted symbols are known by the
receiver and used as pilots, we set x, = 1. Thus, for the sake of performance limits derivation, we consider the
received signal model

o _i2mfed/fi () i
ok = Ynk + Znk = N e < e 4z (85)
k

where o = v/Pf3, and we have highlighted the dependence on p = [6, d] for the phase at each antenna.

Performance limits We now evaluate the performance limits for the estimation of the range d and AoA 6 by
exploiting the information coming from the phase shifts across the antenna elements in near-field conditions.
To this end, we compute the CRLB for the set of parameters ® = {d, 6, ¢, a} in (85). The (i, ) element of the
Fisher Information Matrix (FIM) can be obtained as [45]

=2z [5] [%])
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where y, « is the noise-free version of r, x in (85), leading to a 4 x 4 FIM in the form

Jag Jao Jap  Jda
Jog Joo  Jop  Joa [JA JB]

J: =
Joa Joo Jop  Joa 3 Jc

Jad Ja(} JQLP Jaa

since Jgg = Jod, Jdp = Jods Jda = Jad, Joo = Jops Jao = Jpa, Jap = Jpa- In particular, we have
J J J J (% J J @
Ja= |79 TN gp = T T = [T e (88)
Jéd J(%) Jan J@a Jmp Jaa

To obtain the inverse J~! of the FIM and compute the CRLB for the range d and AoA ¢, thanks to its block
form, we exploit the matrix inversion lemma. In this manner, the inverse sub-matrix related to the parameters
of interest (i.e., d and 0) is obtained, reducing the computation complexity. Specifically, we have

Jf;,m =H! (89)

where H £ J, — JgJ '], that allows to take into account matrices with lower dimensions. Thus, we have the
CRLB for near-field range and AoA estimation given by, respectively:

CRLB) =y, CRLB) =133 (90)

The received signal in (85) presents a phase term dependent on dy (thus, d and 6) through 7, where f(p) =
f (6, d) represents the wavefront curvature information [46]. To derive the performance bounds in the near-field
region, two main assumptions are usually carried out [47]: (/) to simplify the strong nonlinearity of the phase
profile in the near-field regime according to (85), the Fresnel approximation is exploited; (i/) the amplitude
variations across the array are neglected, by considering a constant SNR for all the K receiving antennas, i.e.,
ax = a Vk. Thanks to this approximations, closed-form expressions can be derived for the CRLB for range and
AOA estimation [48]:
CRLR® _ 67 (9% (K?—4) sin® 0 + 15d?)
~ 72NK SNRg cos* 0 % (K2—4) (K2-1)'

3c?
2m2f2NK SNRg cos? 0 62(K? — 1)

However, when d < D.j.., which is denoted as geometric near-field region, the above conditions are no longer
valid. In fact, such a boundary depends only on geometrical arguments and it is not related to the carrier
frequency as it is for the definition of the Fraunhofer distance ry = 2D3,,/). In this case, it is impossible to
apply the Fresnel approximation, since its requirements are no longer fulfilled. In addition, the path loss at each
antenna element must be considered separately. Therefore, in the following, we consider the original non-linear

phase profile according to (85). In this case, we can compute the derivatives in (86) by obtaining®

(91)

CRLB® —

(92)

~ 872N SNRy 5 (1— xsnd)?

dd —
C2 P 1+ﬁ _ 2xisinf 2
d? d

_ 8m2f2N SNRy Z (xx cos 6)?

00 = 2 2
c x2 2%, sin
X _ 2xsin@

k (1—&—0,2 7 )

“The other FIM terms are omitted for brevity.
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The previous derivatives are calculated considering the dependence on p of the phase profile only, according
0 (85). Thus, a performance bound is obtained for an estimator extracting location-dependent information
solely from the phase term. For what concerns range estimation, when the array size becomes extremely
large, we can compute the limit for the FIM term Jy4 in (93) as K — oo. For simplicity, by assuming a UE/target
on the broadside direction of the array (i.e., # = 0), we obtain for the right-hand term in (93) the symmetric
series:

= 1
2 (1+ a2k2)? (99)

k=—o00

with a2 = j—i which converges to £ = “ac°th(”/a)2+’§ osch’(v/a) Therefore, the information on the range saturates as

the array becomes extremely large when considering the actual dependence on the non-linear phase term and
path loss. Consequently, the related CRLB for range estimation necessarily presents a horizontal asymptote
for large K, and is lower bounded as

A2 256
- 87T2NSNR0£ 47T3NSNR0d

CRLB® > (96)

where the approximation holds for small a (e.g., a standard \/2 spaced array and practical UE/target distance).
The lower bound is obtained considering that the inverse FIM on range equals the CRLB when all the other
parameters are already known, or they are uncorrelated. Thus, any asymptote derived for 1/J44 is a lower
bound for the actual CRLB, as the other parameters are unknown and the performance accuracy cannot be
improved with respect to this case. As can be seen, saturation of the performance occurs for ELAAs, and the
saturation value depends on the UE/target distance d.

For AoA estimation, instead, considering again K — oo and ¢ = 0, we obtain for the right-hand term in (94) the
symmetric series:
oo k2
52 —_— 97
k;oo (1+a2k2)2 ©7)

s 2 a co’ mT/a)—T 2 T™/a . .
which converges to ¢ = 7 (acoth( /2)34 osch (/ )). Therefore, even the information on the AoA saturates as
the array becomes extremely large when considering the actual dependence on the non-linear phase term and
path loss. Consequently, the related CRLB for AoA estimation necessarily presents a horizontal asymptote for
large K, and, by following the same reasoning as before, is lower bounded as

22 A28

CRLB® > ~
= 8m2NSNRy ¢’ ~ 273N SNR, d3

(98)

where the approximation holds for small a. It is possible to notice that, differently from what predicted by the
traditional expression, the accuracy limit does depend on the UE/target distance d.

If the same analysis is performed again considering the true phase profile (thus still avoiding the Fresnel
approximation), but with a hypothetical constant path loss, we obtain that the performance for range estimation
saturates, while the performance for AoA estimation continues to improve unboundly. This result highlights
that saturation for range estimation mainly arises due to the fact that the true phase profile is considered,
while for AoA estimation is caused by the non-uniform signal strength across the array. In fact, if the Fresnel
approximation is employed, a non-linear phase profile is assumed for all the elements composing the ELAA.
This is not true when d < Dej,,, as the wavefront is almost planar for the array elements far from the array
center. On the contrary, AoA estimation does not require a non-linear phase profile: indeed, it is feasible also
in far field. In this case, saturation occurs since the array elements far from the array center do not collect
significant energy and thus do not contribute to the estimation quality as far as the array becomes extremely
large.

Numerical results Simulations are performed considering a half-wavelength spaced array (§ = \/2), with
f. = 300 GHz, an overall SNR at the reference antenna over the N subcarriers N SNRy, = —20 dB, 6 = 0, and
two different UE/target distances d = 10 cm and d = 1 m. In Figure 16(a) the root-CRLB for range estimation
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Figure 16: Root-CRLB for range (a) and AoA (b) estimation as a function of the array aperture D..,. UE/target
distance of 10 cm (continuous lines) and 1 m (dashed lines).

is depicted as a function of the array aperture D.., (i.€., for increasing values of K). Continuous lines (—) are
for d = 10 cm and dashed lines (--) are for d = 1 m. The blue curves (o) refer to the actual CRLBs derived
with the FIM terms obtained with the true phase profile and path loss model in the geometric near-field region;
the gray curves () refer to the CRLBs obtained with a hypothetical constant path loss, namely considering
the original phase profile, but gx ~ § Vk; lastly, the yellow curves (+) show the traditional CRLBs obtained
according to the Fresnel and constant path loss approximations. For reference, the red lines (x) are the lower
bounds (asymptotes in (96)). It is possible to notice that traditional results based on the Fresnel approximation
start to lose their validity when the array aperture becomes comparable to d, i.e., d = D, (see the vertical
black lines). Indeed, the performance predicted according to the Fresnel approximation improves unbounded
as the aperture increases, since all the antennas consider a non-linear phase profile for the received signal.
This is not true when an ELAA is employed, as only the signal received by the central portion of the array
exhibits a strong nonlinearity for its phase distribution. In contrast, when the true phase profile is adopted, we
observe a saturation of the performance. The gap between the actual CRLB (blue lines) and the asymptotes
(red lines) comes from the other unknown parameters. When a constant path loss is considered, together with
the true phase profile, saturation is still experienced, as the main effect on the range estimation performance
is due to the use of the Fresnel approximation, rather than to the constant path loss assumption. Indeed, the
non-linearity of the phase profile provides a significant improvement of the range estimation performance and
it is not considered in this case, that is why saturation still occurs.

In Figure 16(b) results are reported for AoA estimation. In this case, when considering the classical CRLB
obtained with the Fresnel approximation, the bound is independent of the distance d (yellow curves), and the
accuracy improves unbounded as the array size increases. Differently, the bounds derived with the FIM terms
obtained with the true phase profile and path loss model in the geometric near-field region, show a saturation
as predicted by the asymptotes in (98). Moreover, it is shown that the CRLB for AoA estimation becomes
dependent on the UE/target distance, differently from what would be expected in far-field conditions or even
in near-field conditions when d > D.j.,. Notice that for the case 6§ = 0 we are considering, the CRLB and the
inverse of the information coincide, so that the lower bound in (98) predicts exactly the saturation value of the
CRLB.
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4.4.2 Velocity Estimation using Extremely Large Antenna Arrays

Thanks to the adoption of ELAAS, the ability to observe targets from different directions permits the estimation
of the different velocity components, as for multi-static radars, but with a monostatic configuration. In particular,
it allows to estimate not only the radial component of the velocity, as is traditionally the case in the far field,
but also the transverse one. This is the concept of velocity sensing recently introduced in [49] when employing
ELAAs working in near-field conditions, enabling to get a full picture of the target velocity and trajectory using
a monostatic radar instead of multi-static radars that require challenging synchronization and expensive hard-
ware [50]. Such a capability makes ELAAs attractive for velocity estimation, in addition to the already-known
benefits of near-field operations, such as improved spatial multiplexing even in LOS conditions [51, 52], the
possibility of single-anchor localization [46] and high-resolution sensing [43,52].

System model We consider sensing of a passive point target in a 2D scenario using a SIMO monostatic
radar at the BS, arranged according to a linear ELAA deployment. The parameters describing the considered
setup are the same as above in the previous subsection for the sensing case (b). We assume a point target
placed in position p = [d'sin 6, d cos#] T moving with velocity v = [v, »]T tangent to its trajectory on the plane,
where v, and v are the radial and transverse velocity components, respectively, with respect to the center
of the ELAA. For convenience, let us consider a polar coordinate system, so that the distance d, between
the k-th receiving antenna and the target can be written as in (80) . The central antenna element of the
ELAAs, which is selected as reference for distance, angle and velocity estimation, transmits an OFDM signal
spanning N subcarriers and M OFDM symbols. At the receiver side, after classical cyclic prefix removal and
FFT processing, the received signal is

'mnk = Ym,n k + Zm,nk = \/ﬁﬂm,n,kxm,ne_ﬂﬂ—fnﬂ( eJQWVn,kasym + Zm,n,k (99)

where Tym = T + T, is the symbol time with T, is the cyclic prefix duration and T = 1/Af, and the
round-trip Doppler shift is represented as v, x = % (v + v - ex), with a - b indicating the scalar product between
vectors a and b. Here, the term e, = d/||dk|| is a unit norm vector denoting the direction between the k-th
receiving antenna element and the target, so that v, includes a component which is the projection of the
target’s velocity along this direction for each receiving antenna. In this case, we consider the channel gain
equal for all the antennas, which is reasonable for the practical size of the receiving ELAA, in particular when
d > Dqaa in LOS-dominated near-field scenarios, and small relative bandwidth B = NAf <« £, so that we can
write Bmnk = B, Vm, n, k. Starting from the received signal (99), the BS aims at estimating the position p and
velocity v through the estimation of their components [d, 8] and [v;, »], respectively, thanks to the use of the
ELAA.

Performance limits The optimal way of processing the receiving signal would require the joint estimation
of all the unknown parameters ® = {d, 6, v,, »} from the M x N x K observations. This would imply a very
high complexity, especially when operating in the near-field region where the planar wavefront approximation
does not hold. To focus here on the estimation of the radial and transverse velocity components when adopting
the ELAA, we assume that the distance d and the AoA 0 have already been estimated, as done also in [49].
This can be realized by exploiting the information coming from the different subcarriers (e.g., for distance es-
timation), and/or from the phase profile along the array caused by the spherical wavefront (e.g., for distance
and angle estimation). For this reason, 7, is known and does not need to be estimated. Moreover, we con-
sider x,, , = 1, as the transmitted symbols are known at the receiver and used as pilots. Starting from this
assumption, we compute the CRLB considering © = {v,, »}. The (i, )-th element of the FIM can be obtained

as [45]
= 2 { 3 [P [Peee] (00

m,n,k

Jv,v, Jv,vt
- (101)
Jvtv, Jvtvt

Thus we have a 2 x 2 FIM in the form
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with J,,,, = Jy.., and the corresponding CRLBs on the radial and transverse velocities are given by, respec-
tively,

1

CRLBM) =
det J

Joe CRLB(‘“)*d e (102)

where detJ = Jy,, Juy, — J2 According to the geometry of the scenario, we can project the radial and

transverse velocity componetnts along the direction e, by obtaining the projections v,x and vy, respectively. It
holds

Vik = Vrk + Vik (103)
where vy is the projection of the velocity v along the direction e. Then, we can write

fa
ke = (v + Vi), (104)

The projections v, and v can be obtained as

Vrk = QkWr (105)
Vik = Pkt (106)
where
_ . 1 — X sin 0
a0 :d X sin @ _ = (107)

dk 1+ﬁ_2xksin9
d? d

Xy cos 0 Xj cos 0
Pk = = .
dk x2 o, si
X 2xxksinf
d\/1+ % v

By substituting (105) and (106) in (103), and considering (104) in the model (99), we can compute the deriva-
tives in (100) and obtain the components of the FIM

v,vr ZI Z 1+ qk)2 (109)

Z/ Zpk (110)

vtv, ZIZPk 1+qk (111)

where
27r2 f2MSNR (M2 —1)T2
. Y (112)
3c?
and we defined the SNR as SNR = Pj3?/52. Considering the practical case d > Deiaa, it holds J,,, Jy., > J2,,
so that detJ ~ J,,,, .., and we have CRLB(*) ~1/J,, and CRLB™) ~1/J,,. This assumption is verified
exploiting the 2nd order Taylor expansion for g4 in (107) and py in (108). In this way, considering x2/d* — 0
when d > D.,, and cos?§ spans between 0 and 1, an upper bound is found such that the ratio between
J2, and J,,,, J,, results less than 0.08. This leads to the conclusion that the estimation of the radial and the
transverse velocity components are practically decoupled in this configuration. Since B « f, f, = f. and, as
a consequence, I, ~ I. When d — oo, the right-hand summation in (109) tends to 4K and, consequently, the
inverse of the radial velocity information becomes the traditional CRLB in far field

3c2
) = 11
CRLB "~ 8m2f2 MNKSNR (M2 — 1) T2 (113)

sym
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where (M? —1)T2, is approximately the squared signal duration T3

Zhs» @nd a MVK SNR gain is experienced
due to the M x N x K observations. When 6 = 0, (109) becomes

2
22 MNSNR(M? —1) T2
e ( ) sym 1+ 1 ) (114)

Jvve=
Ve Ve 2
3¢ k 1/1+k2—(‘§§

Interestingly, the information on the target’s radial velocity reduces as the distance d decreases, since k262 /d? >
0, resulting in an SNR gain lower than K for a small distance. This is reasonable since when the target ap-
proaches the array, the antennas farther from the array center sense the target in a direction different from
that corresponding to the radial velocity, which is defined according to the reference central element. However,
for practical array dimensions and operating distances (in particular, when the distance becomes higher than
the largest x, i.e., than the array aperture De),.), the term k252/d? is small. Therefore, as far as the distance
d exceeds Dga,, We have 1/J,,,, — CRLBM) in (113) which does not depend on the distance d and on the
array aperture. Thus, no differences are experienced between far-field and near-field radial velocity estimation
quality.

For what concerns the transverse velocity, its estimation at a large distance is not possible; specifically, we have
px — 0 for d — oo (in practice, when d > De.,) so that J,,,, —0 and no information can be retrieved. In fact, when
the target is far, the whole array sees it under a single direction, which is that of the radial velocity. Differently,
when the array aperture increases and/or the distance decreases, we have px # 0, and transverse velocity
estimation becomes feasible. Therefore, the possibility of gathering information on the transverse velocity can
be attributed to the possibility of projecting the target velocity along the set of directions corresponding to the
different antennas of the array. The information on transverse velocity is maximum on the boresight direction
of the ELAA according to (110) and (108) (i.e., # = 0); differently from the radial velocity, it is not possible to
estimate the transverse velocity when 6 = +£7. In fact, in this case, the direction e, is the same for all the
antennas and corresponds to the radial direction, so no further information becomes available rather than the
radial velocity. For the case of transverse velocity estimation, we can write for § =0

272 £2 MNSNR (M2 —1) T2, 52 K2

J = sym
Ve 2 A2 z : 52
3c?2d P 1 + k2 o

(115)

which decreases with the square of the distance d for fixed SNR. Considering the practical case d > Djaa,
which also allows to define the SNR according to (112), the term k252 /d? is generally small, and the following
approximate expression is obtained

I a 72 £2 MNKSNR (M? — 1)T52ym(K2 —1)6?

v 18c? d?

N 72 £2 MNKSNR TozbsDezIaa

18c2d? '
The information on the transverse velocity is proportional to the squared signal duration, as for the radial ve-
locity in (114). Larger carrier frequency f. is beneficial for both radial and transverse velocity estimation. The
adoption of a proper array aperture D,, can be traded to achieve the required transverse velocity accuracy
depending on the operating distance d, while the SNR and the symbol time have the same impact on both the
components. Expression (116) shows a deep difference between what happens in the near field for distance
estimation and transverse velocity estimation. In fact, in near-field distance estimation, the CRLB is propor-
tional to d?/f2DZ,,; as a result, in that case, the root-CRLB is inversely proportional to the Fraunhofer distance
dig = 2D§,aa//\, with A = ¢/f.. Therefore, increasing the array aperture D, (i.€., number of antennas, antenna
spacing) and/or the carrier frequency is beneficial for the estimation quality, with a larger impact of the array
aperture. Instead, in transverse velocity estimation using ELAAs, the parameters affecting the quality are the
same according to (116), but they influence the bound all with the second power. Differences are evident when
considering a half-wavelength spaced array (5 = A/2). In this case, the information on the transverse velocity
is

(116)

72 MNKSNR (M2 — 1) T2, (K2 — 1) i
vy ™ 7242 ( )
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Figure 17: Root-CRLB for radial velocity (a) and transverse velocity (b) estimation as a function of the distance
d for different apertures D.,,,. Markers stands for the root-inverse information in the same setting.

which does not depend on the carrier frequency, differently from the radial velocity estimation or what happens
for near-field distance estimation.

Numerical Results We present some results concerning the quality of velocity estimation using a linear
ELAA. If not differently specified, we consider f. = 300 GHz, K = 101 antennas, and N SNR = 10 dB. A packet
with M = 14 OFDM symbols is considered, and symbol time T,,m = 66.6 us.

Figure 17(a) shows the root-CRLB for the radial velocity estimation in (102)-left as a function of the distance d,
for a small distance from the array. Markers indicate the approximation obtained as /1/J,,,, with J,,,, given
by (114), showing that it is very tight for the condition of interest. The traditional far-field CRLB is reported
for comparison. Results are given for different apertures De.., but with the same number of antennas K; this
choice allows to consider a fixed overall received power, thus characterizing the impact of the array aperture
under a constant number of observations MNK and thus SNR gain. As it is possible to notice, a small deviation
from the far-field CRLB is experienced only at very small distance from the array, in particular, for a distance
below the array aperture D.p.., region also known as geometric near field. In Figure 17(b) the root-CRLB
for the transverse velocity in (102)-right is reported as a function of the distance d, considering 6 = 0 and
6 = 45°. Again, the comparison between the exact root-CRLB and its approximation 4/1/J,,,, (markers) shows
a very good agreement. It can be noticed that the accuracy decreases as the distance d increases, as well
as when the angle increases. The array aperture D... has a fundamental role in achieving a good estimation
quality.

Figure 18 compares the radial and transverse velocity accuracy in terms of root-CRLB as a function of the
distance d for a fixed number of antennas K, 6 =\/2, 6 =0, and two different carrier frequencies, i.e., f. = 28
GHz and f. = 300 GHz. Thus, the two conditions translate in two different array apertures D... It is possible
to notice that the radial accuracy is close to the traditional far-field CRLB, and it is always higher than the
transverse one. In fact, by comparing (113) and (116) it can be seen that when d = D.../(4v/3), the estimation
quality for the radial velocity equals the estimation quality for the transverse one, at # = 0. Thus, an operating
distance smaller than the array aperture D, is required to achieve a balance in terms of estimation quality
among the different components of the velocity. The transverse velocity accuracy does not depend on the
carrier frequency, since we are comparing the results considering half-wavelength antenna spacing; differently,
the estimation quality for the radial velocity improves as the carrier frequency increases.

To summarize the impact of the carrier frequency on the performance bounds for near-field distance, AoA,
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Figure 18: Root-CRLB for the radial and transverse velocities in near-field (NF) conditions. Comparison with
the far-field (FF) CRLB in (113).

and velocity estimation, Tab. 4 is shown. It is straightforward that, in general, increasing the carrier frequency
is beneficial for the achievable performance in all the considered cases. However, when an half-wavelength
array is considered, the CRLB for angle estimation and the CRLB for transverse component estimation are
independent on the carrier frequency. In fact, the increase of the accuracy due to the carrier frequency is
compensated by the smaller aperture.

Table 4: Comparison of the near-field CRLB for distance, AoA, and velocity estimation at § = 0.

Fixed geometry
(K,6,d, D)

Fixed signal
(fe, M, N, SNR)

Half-wavelength
array (6 = )

Distance

More antennas in a
fixed aperture: linear
SNR gain only.

o« f2.

The increase of the
accuracy due to the
carrier frequency
through the term X2
cannot compensate
the loss due to the
smaller aperture.

AoA

More antennas in a
fixed aperture: linear
SNR gain only.

Independent on f£..
The increase of the
accuracy due to the
carrier frequency
through the term X2
is compensated by
the smaller aperture
(no effect).

Radial Velocity

x 7
1
>k :
Linear SNR gain.
1
Accuracy improves

with the frequency as
in far-field Doppler-
based velocity esti-
mation.

Transverse Ve-

locity

More antennas in a
fixed aperture: linear
SNR gain only.

Independent on f.
The increase of the
accuracy due to the
carrier frequency
through the term X2
is compensated by
the smaller aperture
(no effect).
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4.5 Beamfocusing algorithms via trasmittive RIS for active multi-antenna
feeder systems

In this section, we address the extremely large-scale multiple-input multiple-output (XL-MIMO) concept, which
has emerged as a key enabler for THz communications, leveraging massive antenna deployments in the ra-
diative near-field. However, fully active XL-MIMO arrays pose significant challenges in terms of hardware
cost, complexity, and power consumption. An alternative architecture combining an active multi-antenna
feeder (AMAF) with a RIS has been introduced to address these issues. This design exploits near-field
electromagnetic (EM) space-feeding and programmable wavefront shaping to achieve scalable and energy-
efficient wireless connectivity. The AMAF-RIS system reduces reliance on active RF chains, supports recon-
figurable beamforming, and improves energy efficiency compared to conventional hybrid architectures [53].
Several works have investigated the propagation characteristics and beamforming capabilities of this archi-
tecture. In particular, near-field interactions between a RIS and uniform linear arrays (ULAs) or UPAs have
been characterized in [54-58], with singular value decomposition (SVD)-based precoding schemes showing
effective beam control over wide bandwidths. Nevertheless, scalability remains a concern, especially for sup-
porting multi-UE transmission. Related studies [59, 60] have analyzed different RIS feeding strategies and
low-complexity precoding schemes, highlighting trade-offs between performance and computational burden.
Despite promising results, efficient multi-UE communications with this novel antenna architecture remains an
open problem, particularly in designing beam patterns with low inter-UE interference. The work [61] reported in
this section addresses these challenges by developing and evaluating effective near-field beamforming strate-
gies for RIS-enabled AMAF architectures.

UE K

<

UE 2

Figure 19: AMAF-RIS based antenna architecture for multi-UE MIMO communications in LOS conditions.

System Model We consider a transmitting BS equipped with an AMAF-RIS antenna array serving K UEs,
as illustrated in Figure 19. The AMAF array is modeled as a square UPA comprising Nt active elements
positioned at pr; = [xri, yr.i, zr.;]", with i € N7 = {1,2, ..., Nr}, and inter-element spacing of \/2. This array
iluminates a square RIS, made of N unit cells located at pris ; = [xR,SJ, YRIS ), zms,j] T, forje N ={1,2,...,N},

-
also spaced by A\/2. Each UE is equipped with a single antenna at position p\¥) = {xék), y, 291 where
ke K={1,2..,K}.
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The RIS is assumed to operate in the radiative near-field of the AMAF array, which is satisfied if

2 (D\/W)2
2DVAN<d< ——— 7 — dep, (118)
where d denotes the distance between the array and RIS centers, and D is the diagonal of the square RIS. This
condition defines the Fresnel region of the transmit array, where both amplitude and phase variations across
the spherical EM wavefronts must be accounted for in inter-element phase evaluations [62]. Conversely, the
RIS-to-UE link may fall either in the near-field or far-field, depending on their relative distance d’, which may
be smaller or greater than drr [63].

We focus on the single-UE transmission scenario, in which the AMAF sends a symbol x, € C to the kth UE,
with unit average power, i.e., E[|xx|?] = 1. The received signal y, € C is expressed as

_)/k:hZ¢Gkak+Wk:ﬁZkak+Wk, ke, (119)

where by = [by, by, ..., by;]T € CM 1 denotes the beamforming vector at the AMAF, and G = {gj;} € CV*M
represents the AMAF-to-RIS channel matrix. The matrix ® = diag () = diag (¢1, ¢2, ..., on) € CV*N en-
tails the phase shifts applied by the RIS. We assume a transmissive, passive, and lossless RIS, meaning
it receives energy from the AMAF side and re-radiates it towards the UEs with transformations dictated by
®, and satisfies ®”® = 1. Hence, each coefficient ¢, = e/*» has unit amplitude and phase «, € [0, 27).
The vector h] = [hgk),...,h}k),...,h%‘)} € C™N models the RIS-to-kth UE channel, and wy ~ CN (0, 5?)
is the additive white Gaussian noise. For compactness, we define the kth AMAF-UE effective channel as
h] =h]®G c CxMr,

Under the assumption of free-space LOS propagation, the entries of G are given by

A

— ) et
dnd; Gr (@) e /3%, (120)

&j.i

where [d; j, ©; ;] = [di}, ¢i . 0 ;] denote the distance and angular parameters between the ith transmit antenna
and the jth RIS element, and Gt (©; ;) is the AMAF transmit gain in the direction of departure ©;;. Similarly,
the RIS-to-kth UE channel coefficients are expressed as

(k) _ A (K)) pmsZed®
fi " 4rd® Gr (@) X4 ke k. (121)
with [dj(k),ej.k’] = [dj(k),@(.k),&}k) indicating the link geometry from the jth RIS element to the kth UE, and

Gr (G)J(-k)) representing the receive gain in the direction of arrival GJ(."). This signal model remains valid for

both near-field and far-field regimes, as it incorporates exact distances and angles among all antenna pairs
[64].

In addition, the SVD of the AMAF-RIS channel G is expressed as
M
G =UAV" = "guv/f, (122)
i=1

where A = diag(&y, ..., &) € CV*N contains the singular values of G, with M = min(Nr, N) and ¢; = 0;(G) €
R{. The matrices U € CV*N and V € CNM*N are unitary, with columns u; and v; representing the eigenvectors
of GG" and G"G, respectively.

In parallel, we define the matrix H = [hy, ..., hx]T € CK*N aggregating the RIS —UE channels across the K
receivers. lts SVD is given by

MI
H=PZQ" =3 ppaf, (123)
=1
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with £ = diag(p1, ..., pm) € CK*N where p; = o;(H) € R and M’ = min(K, N). The matrices P € CX*K and
Q € CV*N are unitary, and contain the eigenvectors of HH" and H"H, respectively, with p; and q; indicating
their ith columns.

We now consider the case of simultaneous transmission towards K independent UEs. Letx = [x;, x, ..., xk] T €
CK*1 denote the transmit symbol vector, where each entry represents an independent data stream with unit
power, i.e., E[xx"] = 1. The precoding matrix at the AMAF is denoted as B = [by, ..., bx] € CN*X_ subject to
a total power constraint tr(BB") = Pr.

Under this configuration, the sum-rate in bits/s/Hz achievable by the system is given by [65]

Zw Zlog R ULVl — (124)
7+ X IRbi?

where v, denotes the rate for the kth user, while the denominator on the right hand side of the expression
models the interference from the other streams plus the noise at that receiver. The analysis assumes no user
cooperation at the receiver side.

Consequently, we aim to maximize the overall system throughput by jointly designing the precoding matrix at
the AMAF and the RIS phase profile. This leads to the following constrained optimization problem

maéirgize I (125)
subjectto @ = diag(y) , (126)
lpil>=1, i=1,..,N, (127)
tr (BB") = Pr. (128)

This problem aims to jointly optimize the transmit beamformer B at the AMAF and the transmission coefficients
o of the RIS to maximize the overall sum-rate. Given the non-convex nature of (125)—stemming from the in-
terdependence of I on both B and ¢—we refrain from pursuing an exact global solution. Instead, we propose
a low-complexity heuristic approach yielding closed-form expressions for both variables. This method, lever-
aging peculiar system characteristics, can also serve as a suitable initialization for more advanced iterative
procedures.

RIS Configuration Strategies for Sum-Rate Optimization We develop a tailored configuration strat-
egy that exploits the near-field nature of the AMAF-RIS link while maintaining a practical diagonal structure for
the RIS. Additionally, we consider the alternating optimization scheme in [66] using the obtained solution as
initial configuration for benchmarking to evaluate the quality of the obtained solution.

For beamforming at the AMAF, [67] demonstrates that, in single-UE settings with near-field propagation, opti-
mal mutual information is achieved by aligning the beamformer with the right singular vectors of the AMAF-RIS
channel. Extending this principle, we define B = V, assigning each UE an orthogonal eigenvector, i.e., by = v,
for k € K.

For the RIS design, we propose a diagonal approximation combining mode selection and focusing. In the first
step, similar as in [57], we define the RIS transmission coefficients vector for a single user k according to

P = ufl © fN), (129)
where @ is the element-wise multiplication operator and
T
f0 = [erind?, e eindl] T et (130)

represents the near -field focusing vector towards the kth UE, where x = 27/\ is the wavenumber, and with
d = |PRIS,i — pR denotlng the distance between the ith RIS element and the kth UE. Then, these K vectors

1
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are used to construct the diagonal RIS transmission matrix as
® = diag (ef-é(zle w)) , (131)

thus enforcing the phase-only constraint for the RIS coefficients.

As an alternative to near-field beam focusing, we consider an minimum mean-square error (MMSE) precoding
approach, widely adopted in MIMO systems [68]. The precoding matrix L = [¢1, ..., £x] € CNV*K is computed
as

L = 5 (o3I + HYH) " HY, (132)

where o3, = § (HHHi/N) introduces a regularization term modulated by a design parameter § > 0, and
n =1/ ||LMMSE)|| _ensures power normalization.

Building upon this precoding structure, the RIS phase profile is constructed similarly to the focusing-based
method. For each user k, the transmission coefficients vector is defined as

b =ull @8, Vkek, (133)

which incorporates the MMSE precoding direction £,for calculating the per-user weights instead of the focusing
vector fiNF) from above. The final RIS configuration is then computed using the same procedure as in (131),
by extracting the phase of the aggregate signal over all users.

Numerical Results The system operates at a carrier frequency f, = 120 GHz (A ~ 0.25cm) with a band-
width of B = 120 MHz. The carrier frequency has been set at the lower end of the sub-THz range, as this
choice enables a general analysis of near-field propagation effects in the considered scenario while ensuring
parameter values of practical magnitude for the RIS configuration, thus keeping the complexity in balance. At
higher frequencies, the RIS dimensions would need to be scaled accordingly to preserve the same near-field
region. The system bandwidth has been selected such that, given the assumed transmit power budget, the
resulting SNR guarantees a sufficient link margin to ensure that the orthogonal near-field channels exhibit
adequate coupling strength. The transmit power is fixed at P = 10dBm, with a noise power spectral den-
sity of 02 = —170dBm/Hz and a noise figure of 3dB . The AMAF comprises Nt = 16 elements arranged
as a (\/2)-spaced UPA, while the RIS is positioned 8\ from the AMAF along the y-axis. The RIS features
N = 2500 elements (25X x 25\, with A\/2 spacing) and is deployed at a height of z = 10 m without tilt. Two
single-antenna UEs (K = 2) located in the near field are considered: one fixed at @) = [30°,135°] at a
distance d(¥) = 14 m, relative to the RIS center, and another moving along a 10 m-radius circular trajectory in
the xy plane. In addition, the directional antenna gain functions Gr(®) and Ggr(®), respectively associated
with the AMAF and UEs antenna elements, are assumed to be identical for all array elements and are given
by Gr(®) = Gr(®) = 2sin(¢) sin(¢). The AMAF beamforming matrix is initialized as B = V for all considered
configurations. We then compare two different RIS design strategies: the focusing-based (FOC) approach
and the MMSE-based (MMSE) approach (with §/N = 0.2). Specifically, each UE is assigned a RIS transmis-
sion coefficient vector computed according to (129) in the FOC case, and according to (133) in the MMSE
case.

For benchmarking and evaluating our engineered solution, an alternating optimization procedure is applied
using our solution as initial configuration, where the AMAF beamforming matrix B is first optimized via the
weighted minimum mean-square error (WMMSE) approach to yield B*, followed by gradient-based optimiza-
tion of the RIS configuration matrix ® to obtain ®*. This iterative optimization process, described in detail
in [66], gradually enhances the system sum-rate by alternately improving the active and passive beamforming
components until convergence to a local optimum is achieved.

Figure 20 compares the per-user rate v, k € K = 1,2 (shown in Figure 20(a)), and the overall system sum-
rate I' (shown in Figure 20(b)) as functions of the azimuthal separation Ay between the two UEs, which move
along a circular trajectory. Solid lines refer to the optimized configuration derived via the algorithm in [66], while
dashed lines represents our engineered phase configuration from (131).
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Figure 20: Comparison between (a) the per-UE rate -y, k = 1,2, and (b) the system sum rate I as functions of
the azimuthal spacing between UEs along a circular trajectory, under the assumption that the RIS
applies only phase shifts. Solid lines (—) represent the optimized configuration, while dashed lines
(— —) correspond to the engineered strategy for ® matrix configuration without optimization.

In Figure 20(a), the individual per-UE rates exhibit a clear dependence on the angular separation. When Ay is
small, i.e., the UEs are closely spaced, the inter-user interference cannot be fully mitigated, resulting in asym-
metric rate performance: typically, only one of the two users benefits from favorable channel conditions. As
Ay increases, both users experience improved performance, particularly when one UE aligns with the bore-
sight of the RIS. In this configuration, the transmit beam pattern of the RIS provides optimal power focusing,
which is especially evident under the optimized scheme. However, the performance gap between the optimized
and the heuristic configurations remains limited. This indicates that despite its simplicity, the proposed engi-
neered design captures the optimal solution’s essential structure and performs comparably well. Moreover, the
difference between the FOC and MMSE-based combining schemes is negligible, implying that our heuristic
design enables close-to-optimal performance without requiring complex precoding schemes. Notably, MMSE
precoding demands accurate Channel State Information (CSl), including knowledge of the channel between
each UE and the RIS, which introduces significant overhead in both estimation and feedback. In contrast,
our engineered scheme eliminates the need for such procedures, rendering it more practical for real-time or
large-scale implementations.

Figure 20(b) further supports these observations by illustrating the system sum-rate I'. The trends mirror those
seen in the per-user case: the heuristic configuration approaches the performance of the optimized one across
the entire range of Ay, with a performance gap of less than 20% . Additionally, both FOC and MMSE com-
bining strategies yield almost overlapping curves, reinforcing the effectiveness of the engineered configuration
regardless of the precoding technique employed. This result is particularly relevant when considering large-
scale RIS deployments or scenarios with many users, where the computational burden of optimization and
channel estimation becomes prohibitive. Interestingly, these observations hold across both near-field and far-
field propagation regimes. As such, the proposed scheme demonstrates strong scalability, making it suitable for
diverse deployment scenarios and frequency bands, including those envisioned for future sixth-generation (6G)
systems.

In conclusion, the results highlight a fundamental trade-off between achievable performance and implementa-
tion complexity. The proposed engineered RIS configuration emerges as a compelling solution due to its low
computational cost and negligible performance loss. Despite its reduced complexity, the proposed focusing-
based strategy achieves performance levels close to those attained by computationally demanding optimization
algorithms. These findings validate the practical relevance of the proposed approach, which enables efficient
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and scalable multi-user support in multi-UE MIMO systems without the need for full channel knowledge or
real-time optimization.
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4.6 Simulation-based evaluation of RIS placement and achievable data
rates

In this section, we present a comprehensive simulation-based analysis of the impact of RIS placement on the
wireless propagation environment and the resulting achievable data rates in an industrial setting. The evalu-
ation is carried out at 285 GHz, leveraging the ray tracing capabilities of the SiMoNe to capture the complex
electromagnetic interactions within the Robopac factory hall, where POC1 will be showcased. Indeed, WP2
has defined the configuration of POC1 within Deliverable D2.3 [69], and therefore this activity of WP4 will
consider the same POC scenario, that is, the Robopac industry plant. High-gain antennas with narrow beam
patterns are deployed at the TX and RX ends to establish a LoS link enhanced by the RIS, which reflects the
incident signal to the receiver.

The pathloss predictions derived from the ray tracing simulations serve as a basis to determine possible RX
placement and to assess the influence of the RIS RCS on system performance. These results will be used as
a starting point for the definition of the layout that will be used in the TIMES POC, and to obtain an estimate
of the achievable performance. The underlying calculation of the pathloss in the SiMoNe ray tracer, including
antenna gains and RIS response, is detailed in Section 3.2.4. Subsequently, the achievable data rates are
computed by mapping the pathloss values to link-level metrics under realistic assumptions of modulation and
coding schemes. This approach allows us to quantify the potential throughput gains enabled by RIS-assisted
communication in industrial scenarios.

Figure 21 illustrates the layout of the scenario within the Robopac factory, where the transmitter is located in the
top right, the RIS is placed centrally at the bottom, and the receiver is positioned in the top left corner behind
the machinery. This configuration serves as the basis to investigate the feasibility of wireless communication
between industrial machines and central servers in realistic factory environments.

MEETING ROOM

- —

Figure 21: Layout of the Scenario in the Robopac Factory
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4.6.1 Radio map prediction in the factory

The digital model of the Robopac factory hall described in [18] is used for conducting ray tracing simulations.
The simulation utilizes high-gain directive TX and RX antennas as well as a reflective RIS which emulate the
custom devices developed within the TIMES project that will be used in the POC activities. Their behavior is
described by electromagnetic patterns provided by Anteral, as shown in Figures 22 and 23. The employed
antennas exhibit a narrow Half Power Beam Width (HPBW) of only 1°, ensuring a highly focused radiation in
the main lobe direction. The side lobes are located at approximately ¢ = +60° and are suppressed by roughly
40 dB relative to the main lobe, significantly reducing unwanted signal dispersion.
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Figure 22: Antenna Pattern of the High Gain Antennas. Main Lobe at § = 0° and ¢ = 0°

The RIS pattern is defined for an incident wave arriving at an azimuth angle of ¢ = 0° and an elevation angle
of # = 0°. Under this illumination condition, the maximum RCS of the RIS is measured to be —77.34 dBsm,
with the reflection peak observed at ¢ = 32° and 6 = 0°. In contrast, the specular reflection at ¢ = 0° and
6 = 0° forms a side lobe approximately 18 dBsm below the peak. This pattern underlines the highly directional
response of the RIS and its suitability for spatially controlled wave redirection in indoor environments.

To evaluate the feasibility and effectiveness of RIS-assisted communication in the factory hall, map-based
predictions were carried out using the SiMoNe ray-tracing framework. These simulations aim to determine
viable placement configurations for TX, RX, and RIS units within the structural and operational constraints of
the Robopac facility. For this Proof-of-Concept (PoC), all antennas and the RIS are mounted at a uniform
height of 5.05 m, which is above the height of the industrial machinery yet below the ceiling-mounted lighting
infrastructure. As a result, all angular alignments can be considered in the azimuth plane only, simplifying the
simulation setup.

Since the RIS pattern is only valid for an incident angle of & = 0° and features a maximum reflection toward
¢ = 32°, the geometric configuration formed by the TX, RIS, and RX must result in a deflection angle of
32°. Given that the TX is to be installed adjacent to the right-side wall and the RIS on the opposite wall, both
components must be positioned such that the 32° reflection angle allows coverage of the RX region located
within the machinery area. Additionally, structural obstacles such as the vertical support columns—marked as
crosses in the scenario layout in Figure 21—must be considered when determining viable placements.

Two candidate positions were defined for the TX. The first one is located closer to the wall at (x = 32.95m,y =
31.14m), while the second is further away at (x = 38.00m, y = 31.14m). For the first TX position, two possible
RIS placements were tested to direct the beam between structural columns: one with the TX aligned between
columns 2 and 3, resulting in a RIS position at (x = 16.53m, y = 0.358 m), and another between columns 3 and
4, placing the RIS at (x = 22.41m, y = 0.358 m). These are referred to as Position 1 and Position 2, respectively.
For the second TX placement, alignment between columns 3 and 4 was necessary to maintain visibility of the
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Figure 23: Pattern of the RIS. Main Lobe at § = 0° and ¢ = 32°
RIS toward the machine area. The corresponding RIS location was set to (x = 19.28 m, y = 0.358 m), denoted

as Position 3. Note that the y-coordinate of all RIS placements is constrained by the fixed distance from the
wall due to the mounting system.
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Figure 24: Map-based prediction of received power across the factory floor for Position 1

Due to the high directivity of both the high-gain TX antenna and the RIS, the ray-tracing simulation for the
map-based prediction was conducted without considering multipath reflections. Figure 24 shows the resulting
received power across the entire Robopac factory for Position 1. In Subfigure (a), the total received power
is depicted, including contributions from both the direct path via the TX and the reflected path via the RIS.
However, the simulated radar cross section (RCS) of the RIS is significantly underestimated, as only a sub-
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section of the surface was modeled. While the overall shape of the RIS radiation pattern is expected to remain
consistent, the absolute gain would be higher if the full surface were included. As a result of this limited RIS
gain, no discernible influence of the RIS can be observed in Subfigure (a).

To isolate the contribution of the RIS, Subfigure (b) shows the received power exclusively from rays reflected
by the RIS. In both subfigures, a clearly defined main lobe is visible, demonstrating that specular propagation
dominates and reflections have minimal impact on the received power in this scenario. Additionally, shadowing
effects from the structural columns are evident in both visualizations. Due to the narrow HPBW of the antenna
and the RIS, the immediate vicinity around each element is not fully illuminated, which causes the main lobe
to appear at a certain distance from each source.
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Figure 25: Map-based prediction of received power via the RIS in the machine area for all three positions

Since the absolute RIS gain in the simulations is underestimated due to the limited simulated surface area, the
predicted path losses are significantly overestimated. To enable a meaningful comparison between the three
investigated configurations, the received power values in all map-based predictions within the machine area
were normalized to the highest received power value observed across the scenarios.

The results shown in Figure 25 indicate that all three TX-RIS configurations provide comparable performance
within the machine area, with only minor differences of a few decibels. Consequently, the following section will
evaluate the achievable data rates for each configuration in order to assess their relative effectiveness more

quantitatively.
BGSNS 5501110
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4.6.2 Evaluation of RIS-Assisted Throughput in an Industrial Setting

In order to evaluate the influence of different RIS placements on the achievable throughput, three configurations
of TX and RIS are considered, as defined in the previous subsection. For each configuration, three distinct RX
positions are selected to represent different regions of the factory floor: in front of the machines (y = 14.5m),
on top of the machines (y = 19m), and behind the machines (y = 24.5m). Due to the constraint that the
angle between the incoming and outgoing ray at the RIS must be 32°, the corresponding x-coordinates of the
RX for each TX-RIS configuration are uniquely determined. The resulting RX coordinates for each setup are
summarized in Table 5.

Configuration RX Position 1 (front) RX Position 2 (top) RX Position 3 (rear)

Position 1 (15.56, 14.5) (15.25, 19) (14.88, 24.5)
Position 2 (19.12, 14.5) (18.07, 19) (16.79, 24.5)
Position 3 (19.11, 14.5) (19.06, 19) (18.99, 24.5)

Table 5: RX coordinates for each TX-RIS configuration based on the 32° angular constraint.

To estimate the achievable data rates, the simulated pathloss values are compared to the reference receiver
sensitivity thresholds defined in the IEEE 802.15.3-2023 standard [40]. Table 6 lists the sensitivity levels for
selected Modulation and Coding Schemes (MCSs), considering only BPSK, QPSK, 16-QAM, and 64-QAM as
relevant for this evaluation. The values depend on the employed bandwidth and define the minimum required
receive power for successful decoding.

MCS Mod. FEC 216 4.32 8.64 1296 17.28 25.92 34.56 69.12
ID Rate GHz GHz GHz GHz GHz GHz GHz GHz
BPSK 11/15 -67 -63 -60 -57 -55 -54 -52 -49
BPSK 14/15 -64 -62 -59 -56 -53 -52 -50 -47
2 QPSK 11/15 -64 -60 -57 -55 -51 -50 -48 -45
3 QPSK 14/15 -61 -59 -56 -53 -50 -48 -46 -43
8
9

o

16-QAM  11/15 -56  -52  -48 -46 -43 -41 -39 -36
16-QAM  14/15 -52  -48  -45 -42 -39 -37 -35 -32
10 64-QAM 11/15 -51 -45 -42 -40 -36 -35 -33 -30
11 64-QAM 14/15 -46 -43 -40 -37 -34 -33 -31 -29

Table 6: Reference sensitivity levels (in dBm) for selected MCS defined in the IEEE 802.15.3-2023 [40].

For the evaluation of achievable data rates, only a bandwidth of 2.16 GHz was considered, since the RIS
exhibits an approximately constant RCS only over a bandwidth slightly exceeding 2 GHz. If a higher bandwidth
is to be employed, an RCS corresponding to the respective sensitivity levels in Table 6 must be achieved.

Furthermore, a transmit power of 0 dBm was assumed in the evaluation. If a different transmit power is used,
the required RCS of the RIS must be adjusted accordingly—higher transmit power allows for lower RCS, and
vice versa. The exact influence of the RCS on the received signal strength is discussed in Section 3.2.4. A
1dB increase in RCS leads to a 1 dB increase in path gain.

The graphs in Fig. 26 show the achievable data rates as a function of the RCS for three different receiver
positions. The simulations were carried out for RCS values between —30 dBsm and 6 dBsm. Values below
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MCS ID Modulation FEC rate Data rate in [GBps]

0 BPSK 11/15 1.29
1 BPSK 14/15 1.64
2 QPSK 11/15 2.58
3 QPSK 14/15 3.29
8 16-QAM 11/15 5.16
9 16-QAM 14/15 6.45
10 64-QAM 11/15 7.74
11 64-QAM 14/15 9.86

Table 7: Achievable data rates in Gbps for selected MCS at 2.16 GHz bandwidth, based on IEEE 802.15.3-
2023 [40].

—30 dBsm were excluded because no data transmission was possible in this regime. Similarly, values above
6 dBsm were not simulated, as the maximum achievable data rate was already reached and no further gains
were expected beyond this point.

The three subfigures represent different receiver positions, while the color of each curve indicates the receiver’s
relative placement with respect to the machine. The blue curve corresponds to receiver positions in front of the
machine, the red curve represents positions directly on the machine, and the yellow curve indicates positions
behind the machine.

As expected, the highest data rates are achieved for receiver positions in front of the machines (blue curves),
due to the shorter propagation distance and consequently lower path loss. Starting from an RCS of —18 dBsm,
all three receiver positions enable data transmission, regardless of the specific configuration of the TX and
the RIS. A significant increase in data rate can be observed between —12 dBsm and —6 dBsm, which corre-
sponds to the transition point at which the use of 16-QAM becomes feasible. Once the RCS exceeds 0 dBsm,
all combinations of TX, RIS, and receiver allow for transmission with 64-QAM and a Forward Error Correc-
tion (FEC) code rate of 14/15, resulting in the maximum achievable data rate for the simulated bandwidth of
2.16 GHz.

These results demonstrate that, assuming sufficiently high RCS values at the RIS, reliable communication
links over distances exceeding 50 m are feasible when employing highly directive antennas and reflective
surfaces. However, it is important to note that certain impairments—such as beamsquint—were only implicitly
considered in the analysis through the choice of a relatively narrow bandwidth. If comparable RCS values can
be maintained over larger bandwidths, even higher data rates may be achievable.

These considerations will directly inform the design of the POC1 to be implemented in the Robopac factory
hall. In particular, if an RCS of 0 dBsm can be achieved, the KPIs defined in [69] will be fulfilled, enabling a
theoretical throughput of up to 9.86 Gbps.
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Figure 26: Achievable data rates for different RCS values and receiver positions. The blue line represents
positions in front of the machine, the red line corresponds to positions on the machine, and the

yellow line shows positions behind the machine.
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5 Network optimizations for THz-based systems in in-
dustrial environments

In this section, we present upper-layer solutions for intelligent THz networks, including both model-based and
data-driven protocol designs and network optimizations for multi-goal industrial mesh networks, as well as
predictive algorithms for blockage detection and proactive resource allocation.

5.1 MAC and routing protocols design in multi-hop THz networks: a
model-based and reinforcement learning approach

Despite their potential, THz networks face critical limitations in terms of coverage, primarily due to high path
loss and sensitivity to blockage [70, 71]. Multi-hop communication emerges as a promising solution to ad-
dress these challenges by leveraging intermediate nodes to extend coverage and maintain robust connectivity,
particularly in complex environments such as industrial facilities.

While multi-hop routing has been extensively explored in traditional mesh networks [72, 73], its application
to THz systems remains constrained by the limitations of existing protocols, which often rely on complex
routing logic, significant control overhead, or unrealistic assumptions such as always-available relay nodes
[74-77]. Furthermore, the rapid variability of the THz channel—exacerbated by its millimeter-scale wave-
length—poses additional challenges for real-time route adaptation, especially when relying on control-plane
signaling [78].

To address these gaps, this work introduces two fully distributed multi-hop schemes tailored for THz mobile
radio networks, with a focus on simplicity and adaptability to varying network conditions. Unlike conventional
solutions, our approaches operate solely on user-plane data transmissions, avoiding the use of centralized
coordination or control signaling. Moreover, we consider realistic constraints such as the inability of relays
(which are not chosen a priori) to forward packets when not in reception mode.

The two proposed schemes, Table-Less (TL) and Table-Based (TB), leverage reception phases to forward
data but adopt different relay selection strategies: TL sends a duplicate of its data to all neighbors without
maintaining routing tables, while TB relies on route discovery and routing tables to determine the next hop
towards the destination.

In addition to the two protocols introduced above, a third variant of the TB protocol based on Multi-Agent
Deep Reinforcement Learning (MADRL) is proposed. In this scenario, each UE operates as an independent
agent, learning its own policy to optimally choose between unicast and broadcast transmission modes. In
highly dynamic or congested environments, broadcast transmissions are often preferred, as they increase the
likelihood of reaching the final receiver (i.e., the BS in our case) by avoiding reliance on a single next-hop,
which may be congested or no longer available. This motivates the design of a variant of the TB protocol
that can exploit broadcast transmissions—typically associated with TL—to proactively update routing tables
and enhance overall network performance. By leveraging the adaptability and decision-making capabilities of
Deep Reinforcement Learning (DRL) in dynamic environments [79], this TB variant is implemented using Deep
Q-Learning (DQL) techniques, incorporating advanced mechanisms such as experience replay, fixed Q-value
targets, and Double Deep Q Network (DDQN) to ensure both stability and efficiency.

The evaluation uses an Unslotted-Aloha MAC protocol [80], well-suited for THz frequencies due to the limited
coverage area of each device, which reduces spatial collisions, and the long, variable propagation delays
between devices that lower the likelihood of simultaneous data reception at the receiver.

5.1.1 System Model

Scenario To explore the capabilities of THz frequencies, we consider an lloT scenario modeled as a paral-
lelepiped with length /, width w, and height h. Within this environment, N industrial assets (e.g., robotic arms,
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Figure 27: The reference Industrial Internet of Things (lloT) scenario with UEs organized in a grid layout and
the BS at the center.

pumps, valves, and pistons) are arranged in a grid layout [81], with each asset positioned at uniform intervals
within a defined framework. This grid-based arrangement ensures consistent spacing between assets, pro-
viding a controlled environment for analyzing propagation characteristics such as attenuation and interference.
Furthermore, UEs are placed so that each of them can reach at least another UE or the BS (i.e., it has sufficient
link budget), ensuring network connectivity throughout the environment. Additionally, this layout reflects typical
industrial setups, where assets are evenly distributed to optimize workspace organization and accessibility.
The industrial assets, referred to as UEs, require real-time communication with a remote Programmable Logic
Controller (PLC). To facilitate this communication, a BS is positioned at the center of the grid. However, com-
munication between the UEs and the BS may experience significant attenuation due to obstructing elements,
denoted as ’'obstacles’, such as walls or metal slabs. These obstacles are modeled as cubes with side s and
placed at fixed locations to simulate typical industrial obstructions, as shown in Figure 27.

Traffic Model The achievable network performance is analyzed in a worst-case scenario in terms of offered
traffic. This scenario arises when the buffers of the UEs are consistently full, meaning that UEs always have
a new DATA packet ready for transmission to the BS immediately after receiving the Acknowledgment (ACK)
for the previous transmission. This analysis is crucial for evaluating the maximum network throughput of a
THz network (with queue always full), as this metric depends on the type of traffic. Therefore, in the following
sections, we will assume that all UEs generate traffic with a fixed DATA packet size, P.

5.1.2 MAC Layer

MAC protocol As a trade-off between simplicity and performance [82], and given the unique characteristics
of THz communications that help mitigate collisions (e.g., due to the long propagation delays), we consider a
simple MAC protocol based on Unslotted Aloha [80], incorporating a random Back-Off (BO) even in the first
transmission to reduce collisions.

In particular, the MAC protocol works as follows. Each UE is initially in IDLE mode. When new DATA has to be
transmitted, the UE initiates a BO for Tg = Tgo &, where Tgo is the minimum BO duration; £ is a integer random
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Figure 28: Flowchart of the MAC layer protocol from the UE side.

variable, uniformly distributed in the range [1;2/C], with C being an integer defining the maximum duration of
the contention window; and i being an integer counting the number of transmission attempts (starting at 1
for the first attempt). At the end of the BO period, the UE sends the DATA and enters reception mode for a
maximum period, Twarr- Specifically, we set Twair = Tack + 27p,.,,, Since it is the time needed to transmit
the DATA and receive the corresponding ACK, where Tack = %, Pa is the number of bytes forming an ACK,
Ry, = Blog,(M) is the bit rate, M is the modulation order, and 7,__, is the maximum possible propagation delay
in the considered IloT scenario.

If an ACK is received during Twait, the UE either goes back to BO, if a new DATA packet is in the MAC layer
queue (as in the case of full queue traffic), or returns to IDLE if no DATA is queued. Conversely, if no ACK is
received during Twat, the UE retries the transmission up to a maximum number of attempts, R. The flowchart
of the MAC layer protocol from the UE side is shown in Figure 28.

Interference modeling Collisions are computed at the receiver side, taking into account the actual prop-
agation delays from the transmitter(s). Specifically, for each useful data transmission received from UE;, we
evaluate whether it is subject to interference from other transmissions, DATA; originating from user equipment
UE;, where j # i. The level of interference is computed by first determining the temporal overlap between each
interfering transmission DATA; and the useful transmission DATA;. The overlap duration is normalized by the
duration of DATA; to obtain a weighted overlap factor ¢; = % defined as the ratio of the overlapping time, t,, to
the duration of the useful transmission, t;.

This factor t; € [0, 1] represents the fraction of DATA; that is subject to interference from DATA;. A value of
t; = 1 indicates full overlap, while t; = 0 means no overlap.

Each overlap factor t; is then used to weight the interfering power /; ;, which denotes the received interference
power at the receiver of UE; due to the transmission from UE;. This weighted contribution reflects the effective
impact of UE;’s transmission on DATA;. The average interference power observed during the reception of
DATA;, denoted by I, is then computed as the normalized sum of these weighted interference terms:
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lvg =Y Y i (134)
Jj i

This expression ensures that only the overlapping portions of interfering transmissions contribute to the inter-
ference level and appropriately normalizes their combined impact.

The Signal-to-Interference-plus-Noise Ratio (SINR) at the receiver is subsequently calculated as:

Prx
SINR; = ———— 135
PN + /avg ( )

where Prx = 10" is the useful signal power received from UE;, and Prx[dBm] is computed as in (9),
following the far-field channel model derived experimentally from WP3 (see 3.2.1). Py = kToFrx B is the noise
power assuming the antenna temperature equal to the reference temperature Ty, with k being the Boltzmann
constant, Frx is the receiver noise figure, and B the bandwidth.

To assess whether the received transmission can be successfully decoded, the SINR is mapped to the Bit Error
Rate (BER), assuming interference behaves as additive Gaussian noise. This is done through the following
steps:

1. The SINR is first converted to the ratio between the energy per bit of the received signal divided by the
noise power spectral density, %‘; using the relationship:

E, SINR
=b 136
No  logy(M) (138)
where M is the modulation order of the digital modulation scheme.
2. The BER is then computed assuming an M-QAM modulation:
_ (-1 Ep 3log,(L)
BER = Liog,(L) erfc N 21 (137)

where L = /M and erfc(-) is the complementary error function.

3. Finally, the probability of correctly receiving a data packet of m bits is approximated assuming no forward
error correction as:
ps = (1 — BER)™ (138)

A transmission is considered successfully received if the computed SINR exceeds a pre-defined threshold
SINRy,, which depends on the modulation and coding scheme.

Additionally, we assume a half-duplex mode of operation, meaning that if a device is busy transmitting an ACK
and receives DATA simultaneously, the reception is discarded.

Note that we account for propagation delays, which vary for each BS-UE and UE-UE link, as they can be longer
than transmission times at THz frequencies and thus impact the overall performance. Indeed, this peculiarity
may actually reduce collision probability, since simultaneous transmissions (either DATA or ACK) may not lead
to collisions if they are received at different times by the receiver.
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5.1.3 Multi-hop Approach

In this section, we describe our proposal, that is, a TL and TB multi-hop algorithm at the network layer. The key
innovation of both approaches is that UEs switch to reception mode during the BO period, ensuring they can
potentially receive DATA. Consequently, after BO, UEs transmit both their own DATA and any DATA received
from other UEs. To realize the above approach, we set the BO duration equal to Tg = Tparta + Tp,.., + T80 &,
where Tpata = &F is the time needed to transmit a DATA, and P is the number of bytes forming the DATA.
If during BO the UEs correctly receive DATA, and the number of DATA in the MAC layer queue is below its
capacity @, they will enqueue it. In this case, UEs will immediately acknowledge successful reception with
an ACK. Note that, during the WAIT phase, each UE remains in reception mode to receive the ACK for all
transmitted DATA. This also allows a UE to receive DATA from other UEs during Twair and forward them
accordingly.

Table-less multi-hopping In the TL solution, after the BO period, each UE always sends its own DATA
with a broadcast address, thereby producing the well-known broadcast storm problem [72] but, at the same
time, increasing the likelihood that at least one UE within its transmission range is listening to the channel (i.e.,
is in reception mode during the BO or WAIT phase) and can subsequently forward the DATA to the BS. Then,
UEs enter the reception mode either (i) for a maximum duration of Twar or (ii) until they correctly receive the
ACK before Twa it expires. It is important to note that the non-negligible propagation delays, which contribute to
reducing collisions and packet loss, have been taken into account. This approach contrasts with conventional
flooding methods in the literature, where such delays are often overlooked.

Table-based multi-hopping In the TB approach, UEs create a neighbor table containing for each other
UE: (i) an indication of whether it has the BS in its own table, (ii) the number of ACKs received from it; and (iii)
the corresponding received powers Prx. Hence, after the BO phase, each UE transmits its own DATA with a
unicast address to the optimal receiver selected based on the neighbor table. Specifically, the optimal receiver
is always the BS if it is present in the neighbor table; otherwise, it is the UE that has the BS in its table and/or
from which the highest number of ACKs has been received at the highest Prx.

When the neighbor table is empty, after BO, the UEs initiate a network discovery phase without adding any
control plane overhead. Indeed, UEs simply transmit its own DATA in broadcast and then enter reception mode
for Twarr- During this time, they populate the neighbor table based on the ACKs received from all receivers
that have correctly collected the broadcast transmission. Once the neighbor table contains at least one entry,
the network discovery phase concludes. This means that, in the next BO phase, DATA are sent in unicast
to the optimal receiver and the WAIT phase ends before Twat if the correct ACK is received (as in the TL
case)’.

Note that each UE removes an entry from the table after a Time To Live, TTL, expires, which is defined as the
number of consecutive missed receptions of an ACK from a specific neighbor.

Final remarks For both TB and TL approaches, it is important to note that:
1. During Twart, UEs can also receive DATA from other UEs. In this case, they will transmit the correspond-
ing ACK(s) at the end of the WAIT phase;
2. The BS discards any duplicate DATA generated by the same UE but forwarded by different UEs;

3. UEs discard any received DATA that (i) is already present in their queue, (ii) originates from themselves
(to prevent loops), or (iii) exceeds the predefined hop count limit H (i.e., the maximum number of relays
to be traversed before reaching the BS);

®Note that the broadcast transmissions of DATA during the network discovery phase in TB differ from those in TL. In
TB, UEs broadcast DATA packets during network discovery to build a neighbor table, which is then used to select the next
hop toward the BS. Once the neighbor table is established, subsequent transmissions are performed via unicast toward
the chosen next-hop. In contrast, TL does not maintain a neighbor table: each UE broadcasts its DATA using a broadcast
address, and no unicast transmissions are employed.
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4. The UEs discard any ACK received during BO or WAIT but not intended for them.

5.1.4 Multi-Agent Deep Reinforcement Learning

In the MADRL algorithm proposed both the training and execution processes are fully decentralized [83].
Multiple agents (i.e., the UEs) interact with a common and unknown environment, that is the industrial scenario
described in Figure 27. Each UE independently learns a behavioral policy, denoted as «, to optimally select the
most suitable transmission type (either unicast or broadcast) for the given task. The UEs store their interactions
with the environment in a replay buffer, which is used to train and update their respective learning models that
represent the policy .

Specifically, the learning problem is formalized as a Markov Decision Process (MDP) by means of the tuple
(S, AT, R):

» S is the state space, which represents the set of all possible states. A state is the limited observation of
the environment available to the UE. At each time step ¢, the agent observes the state s;. In particular, a
state s; ; € S is represented by the ratio of the ACKs received by the neighbor / and the number of actions
performed that involve that neighbor, a;; € S. In order to have a state space with fixed dimension, we
consider only the Ngy best neighbors, that is, those with the highest ratio.

St,i = ACKt,i/Olt,i (139)

» A is the action space, which defines the set of all possible actions that the UE can take to interact with
the environment. In this work, the action a; € A at time step ¢ is binary, where 0 corresponds to broadcast
and 1 to unicast;

+ T is the transition probability function, 7 : S x A — S x (0, 1). Given the current state s, and action a,
the function 7 describes the probability of transitioning to the next state s/ ;;

* R is the reward function R : S x A x § — R. It assigns a real-valued score, r, based on the current
state s, the action a; performed, and the resulting next state s/, ;. In particular, we define r; as follows:

= {ﬂ(yNRTX Ifat:]., (140)

n(n—0Ngrx) ifa =0,

where § is the unicast factor, ¢ is the retransmission factor, Ngrrx < R is the number of retransmissions
before receiving the ACK, and n is the broadcast factor.

The learning agent interacts with the environment at discrete time steps t € {0,1,...,t, — 1}, where t.,
represents the number of steps in a single episode, which has a duration of Ts. At the start of each episode,
every agent performs a forced broadcast action to discover its neighbors. This action is repeated until at least
one neighbor is added to the neighbor table. Following this initialization phase, when new DATA needs to be
transmitted, the UE observes the current state s, and selects an action a. according to the policy 7 (a|s:), or
simply 7 for brevity. After executing action a., the environment provides a reward r; to the UE, and it transitions
to a new state s/, ;. In our case, the reward is computed when the UE has received the ACK for the transmitted
DATA or the UE has discarded the DATA after exceeding the maximum number of retransmissions, R.

The objective of the learning model is then to identify the optimal policy =* that maximizes the expected
discounted return G, = fop_l reyt, where 4t € [0,1),Vt € {0,1, ..., t, — 1} is @ hyperparameter called the
discount factor, which quantifies the importance of future rewards when executing an action a, at time step t.
By resorting to the Bellman model [84], we define the optimal Q-values as the expectation of G, given that the
agent executes action a, in state s, and subsequently acts optimally until the end of the episode, that is:

Q*(st, ar) = E[Gi|st, a]. (141)
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40,

Following this, it can thus be stated that the optimal policy 7* to be followed in state s, corresponds to selecting
the action a; that yields the highest Q-value, expressed as:

7 (st) = argmax Q* (s, at), (142)

at

In this work, owing to the potentially large number of states (i.e., neighbors), we adopt DQL [85], where each
agent utilizes a Deep Neural Network (DNN) to approximate Q*(s;, a;) for any state-action pair using a param-
eter vector ®. A DNN used to estimate Q-values is called Deep Q Network (DQN), and is designed to take
the state s, as input and output the parametrized estimates of the Q-values, i.e., Qo(s:, ), for each possible
action a, € A.

To train a DQN, at each time step t, each agent fills a replay buffer of dimension D with experiences e, which
are tuples containing s, a, r, and s{ ;. In this way, it is possible to define the target Q-values as:

Qrarget(St, at) = e+ - T/ax Q®(5€+1r 3§+1): (143)
t+1
and therefore we can perform a training step applying any Gradient Descent algorithm. To balance between
exploration of the MDP and exploitation of the learned policy, we adopt an e-greedy approach where, at each
time step t, the agent selects the action randomly with probability €, or greedily (i.e., choosing the action
associated with the highest Q-value) with probability 1 — e. During the training phase the e starts from ey,
then it decreases of e, uUntil it reaches emi, in 15 episodes.

To stabilize training [86], we also resort to the Fixed Q-Value Targets variant [85], where the agent utilizes two
DQNs. One is called online DQN and is used to provide the Q-value estimates at each time step t by means of
the parameter vector ®, whereas the second is named target DQN, and is used to define the target Q-values
with parameter vector ®~. The online DQN is trained every episode, and the target DQN is a clone of the
online DQN, where ©~ is overwritten with © every t, time steps. Consequently, eq. (143) is modified as
follows:

Qtarget(stv at) =nr+v- T/ax Ro- (St/+1: 3£+1)v (1 44)
To reduce the overestimation bias seen in traditional DQN [85], we consider the DDQN paradigm, where the

online DQN is used to select the best actions for the next states, and the target DQN to estimate the Q-values
for these best actions. Therefore, eq. (144) becomes:

Quarget(st. at) =+ 7 - Qo-(st11, argmax Qo(sii1,ati1)) (145)

ZI8]

It is worth mentioning that, however, we do not rely on the common Dueling Double Deep Q Network (3DQN)
[85], as it is primarily designed for environments with a high number of actions that do not significantly alter
the environment itself. In contrast, in our task, depending on the action chosen, the environment can vary
significantly. For example, a broadcast action produces much more congestion than a unicast on, with a clear
impact on the future observations of the agents, making the 3DQN unsuitable for our needs.

5.1.5 Key Performance Indicators

Network Throughput The network throughput, S, is defined as the number of information bits per second
successfully received at the MAC layer of the BS, that is,

PN,
S=-—_X

(146)

Is
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Table 8: Simulation parameters.

Symbol Description Value
fe Carrier frequency 300 GHz
B Bandwidth 15 GHz
Prx.ue Power transmitted from a UE 30 dBm
Prx.ss Power transmitted from the BS 35 dBm
Gue Antenna gain of a UE 5dB
Ggs Antenna gain of the BS 10 dB
Fue Noise figure of a UE 5dB
Fgs Noise figure of the BS 4 dB
NuE Antenna efficiency of a UE 0dB
MBS Antenna efficiency of the BS 0dB
To Reference temperature 290 K
M Modulation order 4
SINRy, SINR threshold 10 dB
C Integer value defining the BO period 5
R Maximum number of retransmissions 3
Pa Size of an ACK 10 byte
P Size of a DATA 20, 50, 100 byte
o} Overhead of DATA 10 byte ’
Q Length of the UEs’ queue 8
TTL TTL for an entry in the neighbor table 3,12
Tso BO minimum time slot duration 1.6 ns
Ns Number of simulations 50
Ts Simulation time 0.5ms

where P is the DATA size, N is the number of DATA successfully received at the BS, and Ts is the simulation
time.

Latency The average latency, L, is defined as the average time needed by UEs to transmit DATA with
success, that is,

1L 1 &
L:NZNTD-ZLJ’/ (147)
j=1 I j=1
where Np, is the number of DATA generated by the j-th UE and not discarded, and L;; is the time interval
from the generation of the i-th DATA by the j-th UE to the reception of the corresponding ACK®. When the BS
successfully receives the DATA from the first relay, we calculate the latency for that packet, denoted as L; ;, by
summing Tack and the propagation delay of the ACK. It is important to note that the ACK from the BS may not
be received by the originating UE, as it is not in reception mode after already receiving confirmation from the
first relay.

5.1.6 Numerical Results

Simulations parameters, if not otherwise specified, are reported in Table 8, where some of them were set
based on discussions with WP5 partners. In particular, all results have been obtained by averaging over Ns
simulations of duration Ts. We set the SINR,, = 10 dB, to ensure a link success probability p; = 0.88, when
M =4,

®Note that UEs can receive ACKs from other UEs acting as relays to the BS.
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Table 9: MADRL parameters.

Symbol Description Value
@ Learning rate 0.01
y Discount factor 0.95
) Retransmission factor 0.1
D Replay buffer size 15000
10) Batch size 256
ter Training periodicity of target DQN 15

€max Maximum exploration probability 1.0

€min Minimum exploration probability 0.01

Estep Decreasing step of the exploration probability 0.067

NgN Number of the best neighbors for input state 4
3 TL =71 TB, TTL =12

- TB, TTL=3 !

2.0 .

15

Network Throughput (S[Gbit/s])

0.0

T R . -
Number of UEs (N)

Figure 29: Network Throughput, S, as a function of the number of UEs, N, for TL and TB with TTL = 3 and 12.

Static scenario We start our analysis by comparing the performance of TB and TL in a static scenario
where both UEs and obstacles occupy fixed positions.

Figure 29 presents the network throughput, S, as a function of the number of UEs, N, for TL and TB with TTL
= 3 and 12. It can be observed that in all the three configurations, S reaches its maximum with N = 12 but
then decreaes as the number of collisions increases. When N = {6;12} TB outperforms TL due to efficient
unicast forwarding, which reduces channel overhead. TB with TTL = 12 achieves the highest overall throughput
due to infrequent neighbor rediscovery and stable next-hop selection. As the number of UEs increases, N =
{18; 24}, the throughput decreases for all schemes due to increased collisions. However, TB with TTL = 3
suffers a sharper decrease. The frequent rediscovery of neighbors leads to suboptimal next-hop choices and
more transmission steps, resulting in a deterioration of performance. In contrast, TL becomes relatively more
effective in dense scenarios: its broadcast approach increases the chance of reaching a UE that forwards the
packet, despite the higher overhead. These results show that in high-frequency channels where collisions with
multiple packets lead to losses (with our setup if the number of interferers is greater than 2, the DATA is lost)
and in turn this can lead to the removal of a neighbor from the neighbor table, the benefits of lower overhead
given by TB decrease with network density. A longer TTL = 12 mitigates this problem by preserving the state
of neighbors for longer and reducing the instability induced by rediscovery.

Then, Figure 30, shows the Average Latency, L, as a function of the number of UEs, N, for TL and TB with
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Figure 30: Average latency, L, as a function of the number of UEs, N, for TL and TB with TTL = 3 and 12.

TTL = 3 and 12. As expected, L increases with N due to the higher number of collisions and retransmissions
caused by the greater number of UEs competing for the channel, while still remaining below 1.75 us. These
results further confirm the better performance of TB under static conditions because of the higher reliability
given by the choice of the next hop. Moreover, when N = {6; 12}, TB with TTL = 3 and 12 show comparable
latency performance, as rediscovery of the next hop rarely occurs under low network load. However, when
N = {18; 24}, the higher collision rate triggers more frequent rediscovery in the TTL = 3 configuration. This
increases the likelihood of selecting suboptimal relays, resulting in higher latency, as also reflected in the
throughput degradation shown in Figure 29.

Based on these findings, it can be concluded that, in static scenarios, there is a need for a proper tuning of the
TTL parameter based on network congestion level. Specifically, in our studies, TB configuration with TTL = 12
consistently achieves higher performance compared to TTL = 3 case. Consequently, the subsequent analysis
will consider only the TB configuration with TTL = 12.

Figure 31 shows the network throughput S, as a function of the payload size P for different contention window
sizes W. We set N = 12, since it is the number of UEs for which the highest S is achieved in Figure 29 and we
compare the performance of TB with TTL = 12 and TL. Increasing W improves performance for both TB and
TL schemes by reducing collisions: a larger contention window introduces greater transmission time diversity
among UEs, lowering the likelihood of packet overlap. This effect shifts the throughput peak from P = 40 B
with W = 5, to P = 60 B with W = 10, reflecting improved robustness to channel contention. Across most
payload sizes, TB outperforms TL thanks to its more efficient unicast forwarding and lower channel overhead
compared to the broadcast transmissions used in TL. However, as payload size increases (P = {80;100}),
the collision rate rises and TB becomes more susceptible to neighbor rediscovery events, particularly when
collisions disrupt ACK receptions. This results in a performance drop that eventually causes TL to surpass
TB, as the broadcast-based forwarding in TL ensures a more consistent delivery path under heavy traffic
conditions.

Figure 32 shows the Average Latency, L, as a function of the payload size P for different contention window
sizes W. As in Figure 31 we set N = 12 and we compare the performance of TB with TTL = 12 and TL. As
shown in the figure, increasing the contention window size to W = 10 results in higher average latency across
all schemes. This is attributed to the longer average BO duration before a UE initiates a transmission attempt.
Additionally, the TL scheme provides higher latency compared to TB, particularly as P increases. This is due
to the inherent inefficiency of broadcast-based forwarding in TL, which does not always ensure the selection
of the most efficient path toward the BS. In contrast, TB leverages explicit next-hop selection, which more
frequently results in shorter and more stable routing paths, thereby reducing overall latency.
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Figure 31: Network Throughput, S, as a function of the payload, P, and the contention window W. We set
N =12, for TL and TB with TTL = 12.
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Figure 32: Average latency, L, as a function of the payload, P, and the contention window W. We set N = 12,
for TL and TB with TTL = 12.

Dynamic Scenario We extended our analysis by focusing on the TB and its MADRL extension under
dynamic conditions, where UEs change their position during a simulation run. Specifically, UEs are moved to
modify their potential neighbor(s). As a result, some UEs may lose their connection to the BS either because
their next-hop moves to a new location or because they move outside the communication range of their next-
hop.

Once the TTL expires, the UEs must start a new network discovery process to find a new path to reach the
BS. As in the static case, we evaluate two TTL values: 3 and 12. To study the effect of mobility, each UE
performs a fixed number of movements during a simulation run, and this number will be denoted as m in the
following.

The higher the value of m, the greater the impact of mobility, since UEs must perform network discovery more
frequently as they change position (to emulate potential environmental or channel variations). However, this
type of dynamicity has a stronger effect in configurations with a large TTL, as UEs require more time to detect
the need to reselect the next hop, leading to packet losses. Therefore, to ensure a fair comparison (i.e.,
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Figure 33: Network Throughput, S, as a function of the number of UEs, N, for TB and MADRL in a dynamic
scenario with m movements.

scenarios with a similar impact of mobility), we empirically set m = [100; 400] when TTL = 3, and m = [25; 100]
when TTL = 12.

Figure 33 shows the network throughput, S, as a function of the number of UEs, N, for both the TB and MADRL
approaches, under TTL = 3 (with m = [100;400]) and TTL = 12 (with m = [25;100]). In all configurations, S
increases with N, reaching a peak at N = 12, and then gradually decreases as N grows further. This decline is
mainly due to increased channel overhead and a higher probability of collisions, which degrade overall network
performance®. As expected, higher mobility (i.e., higher m) leads to lower throughput, as UEs have less time
to discover new neighbors before moving again. Overall, MADRL outperforms TB for the same values of N
and m, with a performance gap widening as mobility increases, reaching a maximum percentage increase of
36% with N = 18, m = 400, and TTL = 3. This improvement stems from the DRL-based approach’s ability to
rapidly adapt to topology changes by selecting optimally between unicast and broadcast transmissions, thereby
accelerating neighbor table reconfiguration and enhancing throughput under dynamic conditions. The reader
can also anyze the results for m = 100 with both TTL = 3 (Figure 33(a)) and TTL = 12 (Figure 33(b)). It can be
seen that a shorter TTL leads to faster neighbor table updates, which in turn improves network throughput in
dynamic scenarios.

Figure 34 shows the average latency, L, as a function of the number of UEs, N, for both the TB and MADRL
approaches, under TTL = 3 (with m = [100; 400]) and TTL = 12 (with m = [25; 100]). As expected, L increases
with N due to higher channel contention and retransmissions, though it remains below 1.15 us. With TTL = 3
and TTL = 12, the trends differ. In the first case, the L values are always higher than the corresponding case
with TTL = 12. This occurs because with TTL = 3, the neighbor table is updated more frequently, increasing
the likelihood that UEs farther from the BS discover the correct path and transmit successfully. Focusing on the
comparison between the TB and the MADRL, when TTL = 12 and m is highest, the latter approach consistently
shows higher L than the former for every N. The only exception is when m = 100 and N = 6, where MADRL
results in lower average latency at this TTL. For N = 18,24 and both TTL = 3 and TTL = 12, the trends are
similar and can be attributed to the speed at which the neighbor table updates, which depends on the TTL
value. However, at high N, the increased number of collisions leads to more unsuccessful transmissions,
which may cause the TTL to expire even before the topology changes due to movement. This phenomenon,
combined with MADRL, leads to a faster reconfiguration of the neighbor table. For lower values of N (i.e.,
N = 6,12) and the lowest m, both approaches exhibit similar behavior. In contrast, with the highest m, the
trend diverges due to the capabilities of the DRL algorithm. At lower TTL values, collisions more frequently
cause the TTL to expire, making the algorithm more effective in anticipating new path discoveries. Since the

8An exception is observed with TB for TTL = 3 and m = 400, where S continues to grow slightly beyond N = 18. Here,
high mobility combined with a short TTL enables frequent neighbor table updates. This leads to more reconfigurations and
a broader set of paths to the BS, helping maintain or slightly improve throughput even at higher N.
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Figure 34: Average latency, L, as a function of the number of UEs, N, for TB and MADRL in a dynamic scenario
with m movements.

time between two consecutive movements is only slightly longer than the TTL expiration time, UEs located at
the first hop are often able to reconfigure themselves and transmit successfully. Because L is calculated over
all packets successfully delivered to the BS, a lower number of hops taken by users that reach the BS results
in a lower average latency.

Overall, MADRL yields higher latency than TB due to its ability to optimally select the most suitable transmission
type depending on the network conditions and this allows more distant UEs to reach the BS. While this
improves network fairness, it also leads to longer multi-hop paths, increasing L. To compare the impact of TTL,
we can focus on m = 100, where L is higher with TTL = 3 because more UEs located farther from the BS can
successfully transmit, thanks to their faster neigbors’ table reconfiguration, increasing the average delay.

In summary, TTL = 3 allows faster reconfiguration of the neighbor table with respect to TTL = 12, making
the network more robust to variability and mobility in the scenario. The MADRL approach improves network
throughput, reaching an increase of 36%, by allowing more UEs to successfully discover paths to the BS, but
this also leads to higher average latency due to an increased number of UEs able to find a new path to reach
the BS with N = 18,24 and both TTL values. Instead, with a fewer number of UEs the trend is different due
to the simpler network topology. In particular, it worth note the difference with N = 6, 12 between TTL = 3 and
TTL = 12 looking to the results with the highest m. With TTL = 3, L is lower with the MADRL, reaching the
maximum percentage decrease of 30% with N = 6, whereas with TTL = 12 the average latency results similar
to the TB case, but the MADRL presents higher values.
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5.2 Al-based MAC optimization for multi-goal scenarios

Next-generation mobile radio networks are designed to support a wide range of applications and use cases.
However, they are expected to face significant challenges in meeting the stringent, heterogeneous, time-
varying, and often conflicting requirements of emerging services [87]. These challenges have led to the
emergence of multi-goal wireless networks, communication systems in which device requirements evolve dy-
namically in both space and time [88]. As a result, such networks aim to jointly optimize multiple, and potentially
conflicting, performance metrics (e.g., maximizing throughput while minimizing energy consumption) [88, 89].
Addressing these needs requires the network to understand and adapt to the temporal and spatial variability
of device requirements. However, the high degree of variability and dynamic behavior in industrial settings
makes it difficult and often inefficient to rely on traditional MAC protocols based on static optimization. In this
work, we explore the use of Al, and specifically Reinforcement Learning (RL), as a more flexible and effective
alternative. Several recent studies have investigated the use of Al techniques to improve MAC protocols and
optimize key performance metrics [90—94]. These works primarily focus on Al-driven parameter tuning, such
as optimizing the Congestion Window (CW) in random access protocols like slotted ALOHA and Carrier Sense
Multiple Access/Collision Avoidance (CSMA/CA) [90-94]. However, existing solutions are typically limited in
scalability, often considering a small number of nodes, and are not designed for IloT environments. More-
over, these studies are not applied to high frequency ranges, such as THz frequencies [95], in which effects
that were negligible at low frequencies, such as propagation delays, now have a great impact and cannot
be neglected [96—-98]. Furthermore, they do not address the complexities of multi-goal scenarios, where di-
verse and evolving requirements must be jointly satisfied. This is, indeed, quite typical in an industrial plant’s
scenario.

To address the aforementioned gaps, we develop an RL model for MAC optimization at THz frequencies in
industrial settings with heterogeneous requirements, that is, a multi-goal environment. By understanding the
variability of the industrial processes and their requirements, the proposed RL-based algorithm, located at
the BS, is capable of selecting the appropriate CW to assign to each sensor to satisfy its specific require-
ments.

In particular, we consider an industrial plant equipped with machines, sensors, and a central BS. Sensors
sense the surrounding environment and acquire telemetry data (e.g., including temperature measures), which
have to be sent to the BS to control and optimize the production process. The communication relies on the
Carrier Sense Multiple Access (CSMA) as MAC protocol. Depending on the data content (e.g., measured
temperature), the packet acquires a different priority, imposing different requirements in terms of latency. Since
industrial scenarios are dynamic by nature, it is not possible to predict the variability of the data content and
assign the proper CW to each sensor. Therefore, we propose a centralized RL model, running at the BS, which
learns the variability and the requirements of the industrial processes to dynamically select the optimal CW to
be assigned to each sensor.

5.2.1 System Model

Scenario We consider a representative industrial plant of size F, x F, x F, m® comprising M machines modeled
as cubes of size M, x M, x M, m* for goods production, and a BS located in the top center of the facility, as
depicted in Figure 35. C sensors are uniformly distributed within the machines’ volume. Sensors are equipped
with communication capabilities and are responsible for monitoring the surrounding environment by acquiring
measurement data, denoted T,,, which must be sent to the BS. Data packets sent by the sensors have a size
P4ata, While ACKs have a size P,q.

Time is discretized into fixed-length intervals, referred to as ticks, each with duration t;k [S]. Sensors generate
data periodically and synchronously. The interval between two successive data generation events is referred to
as a time step, with duration tge, [S]. We index the time steps using an integer variable t. An episode is defined
as a burst of N data packets generated by each sensor and potentially transmitted to the BS. Accordingly, each
episode consists of t =1, 2, ..., N time steps, leading to a total episode duration of tgp = N - tstep [S].

For simulation purposes, we set the tick duration to match the time required to transmit the smallest packet,
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Figure 35: The considered industrial plant comprising machines, sensors, and a BS.

i.e., an ACK. Hence, tick = Pack - 8/ Ry, Where R, denotes the bit rate. The time step duration is then defined
as tsiep = Nhick - tiick, Where Nk is an integer.

Multi-Goal Traffic Depending on the data content, packets may have different goals, resulting in different
requirements in terms of latency. Data packets that have more stringent requirements in terms of latency
are denoted as high priority (HP), while those having less stringent latency requirements are denoted as low
priority (LP). Given T,, ; . the data measured at time step t by the generic sensor ¢ and T,, ;, the corresponding
threshold, two cases can occur:

* Tmte > Tmw: the sensor c is in HP, imposing more stringent requirements in terms of latency 7,
.., Tt,c < Tth hp;

* Tmtce < Tmew: the sensor c is in LP, imposing more relaxed requirements in terms of latency, i.e.,
Tt,c § Tth,lps

where 7, np @and T4, i, are the maximum latencies allowed for LP and HP data, respectively, with 7, pp < Tth jp-
The variability of data content throughout an episode is modeled as follows: at the initial time step (¢t = 1),
each sensor has a 50% probability of being in either the HP or LP state (i.e., with 50% of probability a sensor
generate a data whose content exceeds T, :» and is thus considered HP, or vice-versa). Throughout the
episode, each sensor may change its priority state according to a two-states Markov chain, as illustrated in
Figure 36. If a sensor is in a given state (HP or LP) at time step t, it remains in the same state at the next time
step with probability g, or switches to the other state with probability 1 — g. In detail, g is defined as:

05 ift>t
q= o (148)
1 ift<t.p

Specifically, g = 0.5 if t > t. p, with ¢ being the actual time step and t. p being a random time step in the range
[1, N]. While g = 1 otherwise.
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Figure 36: The two-states Markov chain that characterizes the temporal evolution of the multi-goal traffic.

MAC protocol We consider the CSMA as MAC protocol, whose flow diagram is illustrated in Figure 37. Under
the assumption that all sensors are synchronized in time, each sensor is initially in an idle state, with ng,s = 0
and n., = 0, where ns.,s represents the number of times a sensor sensed the channel, and n,, is the number of
times the sensor transmitted the same packet. If data is generated, the sensor enters a BO state; otherwise, it
remains in an idle state. The sensor remains in the BO state for a duration Tg, which corresponds to an integer
value, randomly chosen in the range [1; W], where W; is the CW to be used. At the end of the BO phase, the
sensor performs sensing. If the channel is sensed as free, the sensor transmits data; otherwise, if the channel
is sensed as busy, the sensor goes again in a BO phase for a given maximum number of times ngeps max, after
which the packet is discarded. After transmitting data, the sensor goes into a reception state. If the ACK is
received, the packet is considered successfully delivered; otherwise, after a 7,,,; interval of time, the sensor tries
again to transmit the same data for a given number of times n. max, after which the data is discarded. Since
we assume a fully connected network, i.e., no channel errors are introduced, data is considered successfully
received at the BS if no collisions, even partial, occur. In case the sensor tries again to transmit a packet, it
enters the BO state, and ng.,s is reset.

It is worth mentioning that the time step duration is configured to allow sensors to receive updated CW values
from the BS for the upcoming data transmission. Subsequently, if data are generated, sensors perform channel
sensing, transmit the acquired data to the BS, and receive the corresponding ACK.

5.2.2 Reinforcement Learning Model

With the aim of properly selecting the CW that each sensor has to use to access the network, while satisfying
the requirements imposed by each sensor’s priority state (i.e., its goal), we exploit a centralized RL model
developed at the BS.

Background on the Chosen RL Model RL algorithms enable an agent to learn task execution through
repeated trial-and-error interactions within a dynamic environment [79, 90, 99], where the agent acts as a
decision-maker and the environment encompasses external uncontrollable factors (Figure 38). The agent’s
objective is to optimize its decision-making policy to achieve a specific goal. The selected RL algorithm is
the Advantage Actor-Critic (A2C) [100], chosen for its particular architecture, which effectively reduces vari-
ance by stabilizing and fastening the training process, and thereby this feature is a good fit for our multi-goal
and dynamic scenario. A2C is an on-policy DRL algorithm that uses a synchronous gradient descent to op-
timize a DNN. It consists of two sub-networks: the actor and the critic. By integrating both policy-based and
value-based methods, A2C facilitates more effective exploration of the environment.

The learning process along an episode evolves as follows. At each time step ¢, the agent is in an initial state
S: and explores the surrounding environment. Given the initial state S;, it performs an action A; according to
its policy my(S:, A:), which is the mapping from states to actions. The action execution leads to a transition to
a new state S;. 1. The critic observes the action and provides feedback, developing the advantage function.
The advantage function quantifies the benefit obtained by taking that action in that state with respect to the
average value of the state. It is formulated as A(S;, A;) = Q(S:, Ar) — V(S:), which is typically approximated as
A(S:, Ar) = Re+yV(Se41)— V(Se), with Q(S:, A) being the action-value function, V(S;) the state-value function,
R: the reward at current time step t, and v € [0, 1) the discount factor, a parameter balancing the importance
of immediate and future rewards. The advantage function is used by the actor to update its policy parameters,
promoting training stability. The actor’'s parameters are updated as follows: A8 = nVy(log wo(St, Ar))A(Se, Ar),
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Figure 38: lllustrative block diagram of the RL operation.

with n being the learning rate. Those of the critic are updated exploiting the following formulation A¢ =
nA(S:, A)V4V(S:). Then, the agent obtains from the environment a reward R;, which rates the goodness
of the action performed. The learning process is generally designed using a MDP, described by the tuple
(S, AT R).

Problem Formulation We develop a centralized RL model, where the A2C agent, comprising both the actor
and the critic, is located at the BS and the environment comprises the industrial plant involving machines and
sensors. The MDP is formulated as follows:

» S is the state space, and represents the set of all possible states S; € S in which the agent can be. It
is defined by S; = {A¢_1, pt—1, nsat, Nixc ;- IN the following, we detail each entry of the state space. First,
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1 if Npx.c > e A Nsat,c > Nsat,c
R,. — 05  ifnxec < Pxc A Nsatc > Asatc A Npxc 70 3)
’ 0.25 if Nix,c 2 Nex.c A Nsat,c < Nsat,c /\ Nsat ¢ #0
0 if Nrx.c < Mrxe A Nsate < Nsatc V Nsat.e =0V N c =0

A1 = (A—11,Arm10, .-, Ar_1,c) represents the vector of C actions selected by the agent (BS) in the
previous time step t — 1, meaning the CW assigned to each sensor, with C being the number of sensors
in the scenario. pi—1 = (pr—11, Pr—12. .- Pt—1,c) IS @ vector of C booleans indicating the priority level
of the sensors in the previous time step t — 1, with value 1 for HP and 0 for LP sensors. Then, ng,;
represents the number of packets successfully received at the BS that satisfies the latency requirements
(i.e., Te.c < Tennp if s€NSOr c isin HP and 7. < 74, if sensor c is in LP) calculated over the previous

k transmissions. Finally, n,. indicates the number of packets successfully received at the BS calculated
over the previous k transmissions.

» Ais the action space, and represents the set of all possible actions A, € A that the agent can perform. It
is defined as Ay = (A:1, At 2, ..., Ar,c) With the generic action A ., performed at time step t and referred
to the sensor ¢, being A; . € {Wy, Ws, ..., Wp}. The generic action W, is selected from a set of D actions
ranging from W; to Wp with a step of Ws.,. Each action corresponds with the choice of a CW with
duration t;. - W;, on which randomly chose a BO time that each sensor has to wait before accessing the
network.

* T:8xA— 8§ x(0,1) is the transition probability function. It models the environment’s dynamics by
returning the probability of transitioning to a new state S;.1 given the current state S; and action A;. In
an MDP, the probability of transitioning to the next state depends only on the current state.

* R, € R is the reward function with R : § x A x S — R. ltis a critical component for the learning process,
offering intermediate feedback to the agent [90,101]. The reward obtained at the generic time step t is
the sum of the rewards achieved by each sensor c, therefore:

C
Re=> Rec, (149)
c=1

where the reward R; . of the generic sensor is specifically designed to account for the historical evolution
of the sensor’s priority state and requirement. It is computed in a step-wise fashion and is formally
defined in Eq. 3.

Specifically, n,. . denotes the number of packets successfully received by the BS from sensor ¢, com-
puted over the last k transmissions. In contrast, n, . represents the average number of successful
receptions, averaged over each k transmissions, carried out by sensor ¢ along the actual episode. nsat c
denotes the number of packets transmitted by sensor ¢ and successfully received at the BS that also
satisfy the latency requirements defined by the sensor’s current priority level (HP or LP), computed over
the last k transmissions. Conversely, fi.,; - represents the number of such packets, averaged over each
k transmissions, performed by sensor ¢ along the actual episode.

The goal of the RL algorithm is to identify the optimal policy my(S:, A;) which maximizes the cumulative
discounted return at time step t, thatis, G, = Ry + YRi11 + V?Reo + - - + YV IRy

According to the defined MDP, at each time step t, the BS observes the current state and selects one action
per sensor, specifying the CW to be used. This information is then communicated to each sensor for use in the
upcoming data transmission. Subsequently, each sensor follows the CSMA MAC protocol described in Section
5.2.1: it senses the wireless channel and, if appropriate, transmits the acquired measurement data to the BS,
using the assigned CW, before waiting for the reception of the corresponding ACK.
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5.2.3 Performance Evaluation

Performance Metrics The performance metrics used to validate the proposed RL-based model include aver-
age latency and success probability.

+ Average Latency is defined as the interval of time between the generation of the first bit of a packet (on
the sensor side) and the reception of the last bit of the corresponding ACK (on the sensor side). It is
formally computed as:

N

1 11 &
L:NZLt:NZEZLt,c, (4)

t=1 t=1 c=1

where L, . is the latency of each packet transmitted by each sensor ¢, averaged over the total number of
time steps composing an episode, N, and the total number of sensors, C.

» Success Probability is the probability that a packet sent by a sensor is successfully received at the BS.

It is formulated as: N N
1 1 Nack t
= —_— = — : ’ 5
Ps = ; Pse = ; Mo s (5)

where N,q : and Ngaa: represent the number of ACKs received and the number of data transmitted
during the total number of N time steps composing an episode, respectively.

Numerical Results Numerical results are obtained using the set of parameters reported in Table 10. The
A2C algorithm is implemented exploiting the Stable-baselines3 library [102]. Both the actor and the critic
Neural Networks (NNs) receive as inputs the observation space. These observational inputs are processed
by a dedicated feature extractor and passed to two separate fully connected NNs, comprising a linear layer
and two hidden layers consisting of 64 neurons each for policy and value estimation. The output of the actor
includes C - D neurons, whereas the critic has a single neuron responsible for value function estimation. The
proposed RL-based MAC protocol, which dynamically adapts the CWs to the different multi-goal traffic sources,
is compared to a benchmark in which a fixed CW is assigned to all sensors, i.e., W;, set to W; = 10, 250, 500.
This ensures a fair comparison, since our proposal selects the CW from a set ranging from W; = 10 to
Wp = 500.

Figs. 39(a), 39(b) illustrate the average latency, L, as a function of the number of sensors operating in HP and
LP modes, respectively. Similarly, Figs. 39(c), 39(d) illustrate the success probability, ps, as a function of the
number of sensors working in HP and LP modes, respectively. For all plots, we set P,.:, = 60 B. It is worth
noting that both metrics are averaged according to the percentage of time each sensor belongs to a given
priority level (i.e., either HP or LP), in accordance with the multi-goal traffic model described in Sec. 5.2.1.
The horizontal lines in the plots represent the performance requirements for HP and LP traffics, which takes
inspiration from typical industrial scenarios [88]. In particular:

* Tinnp = 1-107° s is the latency requirement for HP sensors;

* T p = 2-107° s is the latency requirement for LP sensors (reflecting a lower value w.r.t the HP traffic, in
agreement with what described in Section 5.2.1);

* ps.tn = 0.9 is the success probability requirement for both HP and LP sensors.

By looking at Figure 39(a), as expected, one can notice that the average latency increases with the number
of sensors, due to a higher probability of packet collisions. Most importantly, it can be seen that the proposed
RL-based CSMA model with adaptive CW selection significantly outperforms the fixed CW versions, achieving
a lower average latency while meeting the imposed latency requirement. Specifically, the RL-based model
reduces average latency (averaged over C = 10, 20, 30) by 16.36% compared to the fixed W; = 250 configura-
tion, and by 34.97% relative to the fixed W; = 500 configuration. However, the average latency remains 41.68%
higher than that achieved with the fixed W; = 10 configuration, which corresponds to the smallest possible
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Table 10: Simulation Parameters
Parameter Type Parameter Notation Value
Industrial plant size Fex Fyx F,  40x40x10m?
Scenario Machines size M, x M, x M, 3x3x3m
Number of machines M 12
Number of sensors C {10, 20, 30}
Radio Carrier frequency fe 300 GHz
Configuration Bit rate Rb 50 Gbit/s
ACK size Pack 10 byte
Data size Pata {20, 40, 60} byte
Number of data generated by each sensor N 400
Total number of CWs D 50
Value of the CW W, Wi 10
Value of the CW W)p Whp 500
MAC Difference in the value of two adjacent CWs Witep 10
Tick duration trick 1.6 ns
Sensors periodicity Niick 10.000
Number of times the channel is sensed Nsens,max 3
Number of transmission attempts Nix, max 2
Number of transmissions used for computing 7,x.c and Aszc k 5
Neural network architecture NN 64 x 64
RL Learning rate n 0.0005
Discount factor y 0.9
Number of simulated episodes Nep 5.000
Application Success probability Ps,th 0.9_ .
Requirements HP latency Teh,hp 1. 10_6 S
LP latency Tth,lIp 2.107s

CW. At first glance, this result may suggest that the optimal approach is to statically assign a CW of 10 to all
sensors. Nevertheless, this conclusion does not hold when the success probability is also taken into account.
By observing both Figure 39(a) and 39(c), it can be seen that the RL-based model is able to jointly meet the
latency and success probability requirement across all device counts, whereas a static CW assignment with
W; = 10 fails to do so as it never satisfies the success probability requirement. By comparing the two ap-
proaches, the difference is quite substantial. For instance, with C = 30 devices, the improvement in success
probability reaches up to 71.93%.

From Figure 39(b) emerges that the RL-based model provides a higher average latency compared to two fixed
CW configurations, e.g., W; = 10 and W; = 250, but is still capable of satisfying the LP latency requirements.
Specifically, the average latency obtained with the RL model is 56.62% higher than that achieved with a fixed
W; = 10 configuration and 6.63% higher than that achieved with a fixed W; = 250 configuration. Moreover, the
average latency is 17.33% smaller than that of the fixed W; = 500 configuration. This outcome highlights the RL
model’s ability to differentiate service levels by allocating larger CWs to LP sensors, given their more relaxed
latency requirements, and shorter CWs to HP sensors, to meet the respective latency constraints and mitigate
collision occurrences.

Finally, Figure 39(d) confirms the superior performance of the proposed RL-based MAC protocol over fixed
CW configurations for LP sensors. When C = 30, the model achieves an improvement in success probability
of up to 75.52%, compared to the fixed W; = 10 configuration. Moreover, the RL model successfully meets
the LP latency requirements while ensuring a minimum success probability of 97.78%. These results prove the
robustness of the RL-based model, which, regardless of the number of sensors, is able to guarantee a high
success probability.

To summarise, the results reveal important limitations associated with the use of fixed CW configurations.
Specifically, setting W; = 10 results in minimal latency, but significantly compromises the success probability,
making it unsuitable for reliable communication since it does not satisfy the success probability requirements.
Conversely, W; = 500 ensures a high success probability but incurs excessive latency for dense networks (i.e.,
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Figure 40: Average latency (L) as a function of the packet size (P4at2) for HP and LP sensors with the proposed
RL-based MAC protocol.

for C = 30), failing to meet latency constraints. An intermediate configuration, W; = 250, not only results in in-
termediate values of latency and success probability, but also requires numerous simulation trials before being
selected as the optimal value. In contrast, the proposed model dynamically adapts the CW selection in one
shot, effectively identifying the optimal configuration. This adaptive strategy achieves a balanced compromise
between latency reduction and success probability maximization, while simultaneously meeting heterogeneous
and evolving sensors’ priority requirements typical of multi-goal scenarios.

Finally, the adaptability of the RL model to varying packet sizes is examined. Figure 40 illustrates the average
latency experienced by HP and LP sensors as a function of the number of sensors and for different data sizes
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(e.g., Pgata = 20,40, 60 B). As expected, the average latency increases with both the number of sensors and
the packet size, due to increased collisions due to denser traffic. Notably, in all cases, the average latency
experienced by HP sensors is always lower with respect to that of LP sensors, demonstrating the RL model's
ability to effectively differentiate sensors depending on their priority level (i.e., multi-goal setting) and assign
the appropriate CW accordingly. The average latency discrepancy between HP and LP sensors (averaged
over C = 10,20,30) is 17.29% for Pg.:, = 20 B, 19.45% for P,.:, = 40 B, and 21.58% for P,.:, = 60 B. This
means that a larger packet size also leads to an increased latency discrepancy between HP and LP sensors.
The obtained results confirm the model’s effectiveness in satisfying diverse and evolving requirements within a
multi-goal wireless network environment.
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5.3 Predictive network management and RIS configuration via radar-
based sensing

The adoption of RIS technology introduces significant challenges, particularly regarding real-time configuration
and management. This is particularly true in lloT scenarios, where communication disruptions caused by
the latency between blockage detection and subsequent RIS and BS reconfiguration are often unacceptable.
While increasing the localization rate can help reduce the duration of such outages, this approach is not always
feasible or cost-effective.

To fill this gap, in this section we propose a novel approach that exploits radar-based localization data to proac-
tively configure both the BS and the RISs, ensuring reliable communication links at THz frequencies despite
blockages caused by moving objects. Specifically, our approach predicts the blockage event before it occurs,
thus giving time to the system to react properly and allowing for a reduction of localization rate. We validate
our solution through network-level simulations of uplink data communications between User Equipments (UEs)
and the BS in a dynamic industrial scenario.

5.3.1 Scenario

Although the proposed approach is general, for the sake of explanation and performance assessment, we refer
to a specific industrial scenario. It consists of a 2D industrial environment measuring 9m x 13m, whose layout
is depicted on the left-hand side of Figure 41. We assume that broadband cellular connectivity is provided in
this area by a BS operating at 300 GHz, serving two stationary UEs, namely UEO and UE1. These devices may
represent, for instance, sensing units collecting data to be forwarded to a control center monitoring ongoing
industrial processes.

Two moving machines (e.g., pallet conveyors) are also considered, represented by dark grey boxes in Figure
41. These machines follow a straight trajectory from the top to the bottom of the light grey area highlighted
in the same figure, referred to as the machine zone, which measures 3m x 5m. With this setup, UEO always
maintains a LoS connection with the BS, whereas UE1 initially has a LoS link but later experiences blockages
due to the movement of the machines.

To avoid connectivity failures, two RISs are strategically positioned to maintain LoS links with the BS at all
times, while also providing LoS coverage to areas that may be shadowed by the moving machinery, ensuring
continuous connectivity between the BS and UE1 when the direct link is unavailable.

Figure 41 also highlights, using distinct colors, the area where a LoS link can always be established between
the BS and the UEs, as well as the area where this condition might be lost, potentially requiring the activation
of the most suitable RIS among the two positioned in the top-right and bottom-right corners.

5.3.2 Radar-based localization at THz frequencies

To acquire information on the industrial environment, the BS employs a Frequency-Modulated Continuous-
Wave (FMCW) radar with a single transmit antenna and M, receive antennas, operating at a carrier frequency
f.. The radar periodically transmits a burst of chirp signals to sense the surrounding environment. The re-
ceived signal is mixed with the transmitted signal to produce an Intermediate Frequency (IF) signal containing
frequency and phase differences. The data cube X € C>*M-*N is g three-dimensional tensor representing raw
radar data: S is the number of samples per chirp, M, is the number of receive antennas, and N is the number
of chirps per frame. It is obtained by sampling the IF signal at rate f; with an analog-to-digital converter to get
S samples per chirp.

From the raw radar data X € C>*M>N g FFT is performed across all dimensions of X. The FFT along the first
dimension (fast-time) transforms the IF signal into the frequency domain, yielding the beat frequency 7, = ur,
where = B/ T, is the chirp slope, B is the bandwidth, T. is the chirp duration, and 7 = 2r/c is the round-trip
delay for a target at range r, with ¢ being the speed of light. The range is then computed as r = cf,/(211). Next,
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Figure 41: The considered industrial scenario.

an FFT across the chirp dimension (slow-time) resolves the Doppler shift f,, enabling radial velocity calculation
via v = cfy/(2f.), where f. is the carrier frequency. Finally, an FFT across the antenna dimension extracts
phase differences, providing azimuth angular information. Then, range-Doppler and range-azimuth maps can
be constructed for target localization.

A distance-dependent threshold is applied to the radar maps to produce a detection point cloud. This is
achieved using an exponential decay threshold defined as v = yoe™“", where 7y is the initial threshold value, r
is the target range, and « is a tunable parameter to adjust the threshold’s sensitivity to distance. Range-azimuth
and range-Doppler point clouds are merged based on common range, ensuring target distinction when they are
close in angle but differ in velocity, or vice versa. We employ Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) [103] to cluster targets by density. DBSCAN uses two main parameters: epsilon and
min_pts. Min_pts sets the minimum number of detected points to declare a valid cluster.

A Kalman filter is applied to track the positions of detected targets over time. The Kalman filter, implemented
with a state vector [x, y, v, v,]7, is initialized with positions from the first radar frame and velocities derived from
positional differences. The state transition matrix F incorporates a finer time step than the radar update rate.
By denoting /, as a n x n identity matrix, the measurement matrix H observes the position, with process noise
covariance @ = o4/, and measurement noise covariance R = o,h, where o4 and o, are tuned parameters.
The filter predicts positions at each fine step, updating every radar measurement with radar centroids. The
resulting fine-grained data include positions, velocities, and sizes for each detected target. Additionally, a LoS
blockage check is conducted at each step, leveraging bounding box vertices of detected machines to evaluate
obstructions between the BS and each UE, updating the blockage condition accordingly.

5.3.3 RIS-based Communication at THz Frequencies

In this section, we describe how we model the radio channel between K single-antenna UEs, M RISs compris-
ing Nm = Nmx x Nmy elements, and a BS equipped with an antenna array of N, elements.

UE-BS radio channel modeling: The channel vector hy € CV<! for the k-th UE-BS link considers free space
propagation between each transmitting and receiving antenna element. This assumption is justified for THz
communications, where highly selective beamforming in LoS conditions makes the free-space model a valid
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Figure 42: Representation of the UE-RIS-BS link in case of a blockage event.
approximation. The generic element of the channel vector is thus defined as:
hk,n =V Gk Gn 47_‘_2‘(!“ eij%rdk’ny (6)

with hy, representing the channel coefficient between the k-th UE and the n-th BS antenna element, d,
denoting the Euclidean distance, ) is the wavelength, G and G, are the gain of the elements of the UE and
BS, respectively.

As described in Section 5.3.1, we consider a scenario with moving machines that may introduce blockages
between the transmitter and receiver. In our channel model, we assume that the signal is completely obstructed
by these obstacles, resulting in a null hy when the direct path is blocked.

UE-RIS-BS radio channel modeling: The channel vector hy that characterizes the UE-RIS-BS link for the
k-th UE and the m-th RIS (m € {1, ..., M}) is expressed as follows:

hk = Hbs,mwmhm,ky (7)

where hp,x € CMnx1 s the channel vector between the k-th UE and the m-th RIS, Hysm € CNxNm is the
channel matrix between the BS and the RIS, while W, € CNn*Nm denotes the scattering matrix of the m-th RIS
according to the model described in Section 3.3.1. Specifically, W, can be written as:

W, = diag(e ¥m1, e IVm2 e Wmm), (8)

where ¢¥m 2 (1,9, ..., %y, ) is the vector of the phase shifts. Each RIS is assigned with a codebook of
vectors ¢¥m(Oinc, Oret), Where the incident angle is ©inc = (binc, ¢inc) and the reflective angle is Oyet = (Oref, Pref)-
Assuming a fixed ©,¢ for the RIS-BS link and dividing both the elevation and azimuth planes into 90 discrete
angles, a codebook of 90x90 phase shift vectors can be computed [26] for each possible ©j,¢ in the UE-RIS
link. We say that the RIS is activated when one of the possible m is chosen.

Based on the relative positions of UEs, RISs, obstacles, and the BS, the radio channel vector hy, which models
the direct or indirect link between the k-th UE and the BS, can be classified into three distinct cases:
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Figure 43: Exemplary SINR distribution for the UE-RIS-BS links obtained with a custom Matlab simulator, when
considering the upper RIS.

« Direct link only: A single LoS path exists between the UE and the BS. In this case, each element of hy
follows (6);

+ Indirect link only: Due to obstructions, only a indirect UE-RIS-BS path is available if the RIS is properly
configured (as illustrated in Figure 42), in which case h follows (7);

» Combined direct and indirect links: Both direct and indirect paths are present, resulting in an overall
channel vector given by the sum of the respective components.

Given hy, it is possible to compute the SINR for each k € {1, ..., K}, where we assume the Maximum Ratio
Combining (MRC) technique at the receiver. In particular, the expression of SINR is as follows:

hi® P
SINRy = , 9)
o2+ 1

where the numerator represents the useful received power from the k-th UE that transmits with power Py, o2
is the thermal noise power, and the interference power / is given by

K

B3

ik

2

hi P, (10)

h.
[

where P; is the transmit power of the /-th interfering UEs, ||hi|| denotes the norm of the channel vector hy, while
|~|2 represents the square modulus; under the assumption that both noise and interference follow a Gaussian
distribution.

Figure 43 illustrates an example of the uplink SINR spatial distribution for a single UE-RIS-BS link within
the considered scenario (see Section 5.3.1) with parameters listed in Table 11. For simplicity and to reduce
execution time, the figure was generated using a custom Matlab simulator, which models only the two-ray radio
channel described, instead of relying on the complex and more accurate tools presented in Section 3.2.4. The
results show that, with an appropriate configuration of W,, the coverage can be significantly extended behind
the machine zone, achieving an SINR range of 8—15 dB within a 3m? square region where the RIS is positioned
at the top-right corner (see the red—yellow—green area near the RIS in Figure 43).
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5.3.4 Proposed Approach

In this section, we present the proposed algorithm for predictive network management at THz frequencies,
where both the BS and RISs are proactively configured based on localization information provided by the radar
mounted on the BS.

Specifically, with a periodicity of 7, the radar provides estimates of the coordinates and dimensions of detected

targets, which are subsequently classified as either machines or UEs based on their respective sizes: if the

largest dimension is less than 1 m, the target is classified as a UE; otherwise, it is identified as a machine.

Using this estimated scenario information, the MRC precoding vector at the BS for a k-th UE can be computed

as

_ ke
[[hll”

with hg given by (7) by assuming perfect CSI estimation. Additionally, based on the estimated positions of the
targets, we leverage a predictive algorithm to forecast the occurrence of potential blockages, i.e., to estimate
whether an obstruction will occur between the BS and any UEs within two radar updates. Specifically, each
Kalman filter (see Section 5.3.2) updates the state at each radar update, while in between two measurements,
it predicts the state using a constant velocity model. Then, a linear interpolator considers the past five time
instances to predict the machine’s position at the next step, enabling the verification of potential blockages.
Then, based on the current and predicted positions, the possibility of blockage events is assessed for each
UE-machine pair. If a blockage is predicted, the network proactively activates the appropriate RIS® by selecting
the proper phase shift vector v,,(Ginc, ©ret), t0 €nsure stable communication for UEs that are expected to be
obstructed before the next radar measurement. Since we consider only two RISs and assume that each RIS
can serve at most one UE at a time, we adopt a greedy approach, prioritizing the UEs closest to the RISs.
Similarly, the BS’s multiple antenna is configured to direct its beam toward the newly activated RIS.

(11)

Vk

Based on this proactive configuration of both the BS and RISs, UEs perform uplink transmissions to the BS
following an Unslotted Aloha MAC layer protocol accounting for the propagation delay. In fact, at THz frequen-
cies the propagation delay is typically in the same order of magnitude as the transmission time thus making
useless any MAC relying on carrier sensing.

In particular, the MAC layer protocol works as follows. Whenever an UE has new DATA to be transmitted, it
initiates a BO phase for Tg = Tgo &, where Tgo is the minimum BO duration; £ is a uniform random number
in the range [1;2/C], with C being an integer defining the duration of the contention window and i being an
integer counting the number of transmission attempts (starting at 0 for the first attempt). At the end of the BO
period, the UE sends the DATA and enters reception mode for a maximum period, Twarr- Specifically, we set
Twarr = Tack + 27, Since it is the time needed to receive the corresponding ACK, where Tack = BR’:A, Pa
is the number of bits forming an ACK, R, = Blog,(M) is the bit rate (where we assume that the symbol rate
equals the bandwidth), M is the modulation order considering an M-QAM modulation scheme, and 7,__, is the
maximum possible propagation delay in the considered IloT scenario. If an ACK is received during TwaT, the
UE goes back to BO, as we consider the worst-case condition where all UEs have always a new DATA to be
transmitted. Conversely, if no ACK is received during Twart, the UE retries the transmission up to a maximum
number of attempts, R.

The successful reception of a DATA or ACK transmission depends on the radio channel quality. For the k-th link,
this quality is measured in terms of SINR,, which is computed as in (9), based on the proactive configuration
of the BS and RISs, updated every r seconds. In this way, given a specific error correction code and coding
rate Re, SINR is mapped to a packet error probability P,,'°. A transmission is thereby considered successfully
received if a randomly generated number between 0 and 1 exceeds P, ; otherwise, it is deemed lost.

Finally, to evaluate the overall network performance of our solution, we use the network throughput, defined
as:

9For the sake of simplicity, we assume an ideal and instantaneous communication channel between the BS and the
RISs, as well as that the network has a-priori knowledge of the true coordinates of the RISs.
9For simplicity, we assume that each transmission consists of a single codeword.
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Table 11: Simulation parameters.

Parameter Symbol Value
Carrier frequency fe 300 GHz
Bandwidth B 3 GHz
BS antenna element Gn 0dB
gain
BS noise figure Nr 8dB
BS antenna elements Ny 256 x256
UE antenna element Gk 0dB
gain
Transmit Power P; 0dBm
RIS antenna elements Nris 128x128
Modulation order M 4
Coding Rate (BCH code) Re 0.9
DATA size P 20 byte
Minimum Back-Off time Tso 13.3 ns
Simulation time Ts 1ms
ACK size Pa 10 byte
Maximum propagation Tomax 72.7 ns
delay
Contention window C 5
Maximum R 3
retransmission
attempts
8PNR
S= o (12)

where P is the number of bytes forming the DATA, Ng is the number of DATA successfully received at the BS
within the simulation time Ts.

5.3.5 Numerical Results

The proposed approach has been implemented in a custom Matlab-Python simulator, where Matlab is used
to model the PHY-layer radio channel (as described in Section 5.3.3), and Python is used to simulate the
proposed approach along with the corresponding benchmarks (see Section 5.3.4). Simulation parameters, if
not otherwise specified, are listed in Table 11. Notably, to manage the huge number of RIS elements required
to provide a reasonable link budget in non-line-of-sight (NLoS) condition, the simulator uses the large RIS
approximation from [27], which significantly lowers the computational complexity when deriving the UE-RIS-
BS channel. Additionally, each RIS element is modeled like a patch antenna, as detailed in [26]. Regarding the
BS and the UEs, both employ omnidirectional antenna elements with 0 dB gain. However, the BS is equipped
with an array of N, elements, resulting in an overall array gain of 48 dB (very close to the 50 dB gain of the
high-gain antenna produced by Anteral for WP5), whereas each UE is equipped with only a single antenna
element.

To evaluate the overall effectiveness of our proposal, Figure 44 depicts the network throughput as a function
of the radar update interval within a simulation time of Ts = 1 ms. We compare our radar-based approach,
applied using two configurations of receive antenna elements at the radar, namely M, =32 and M, = 128,
against an oracle-based approach that has perfect and continuous knowledge of obstacles and UEs positions.
The performance of the latter, introduced here as a benchmark, has been evaluated with and without the
presence of RISs in the scenario.

As expected, network throughput increases with more frequent radar updates, as this enhances the accuracy
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Figure 44: Network throughput comparison between our solution and an ideal oracle which has perfect and
continuous knowledge of obstacles and UEs positions, varying radar update periodicity (r), number
of radar receiving antennas (M,), and RISs presence.

of proactive RISs activation, thereby reducing losses during obstruction events. Additionally, the performance
deteriorates significantly when the radar has an insufficient number of receiving antennas due to inaccurate
position estimation (see the curves for M, = 32 and M, = 128). Indeed, the performance of our approach
matches that of the oracle without RISs only by setting M, = 128. With a single radar update, = = 1 ms, the
network acquires the estimated map only at the start of the simulation, preventing timely RISs activation and
thereby resulting in performance far below that of the oracle with RISs. Conversely, with five and ten radar
updates, i.e., 7 = 200 and 7 = 100 us, respectively, our solution is able to closely approximate the ideal oracle,
even when the oracle employs RISs as soon as needed.

5.3.6 Performance Analysis with WP3 Channel Model

The aim of this section is to compare the numerical results obtained using the theoretical models for the
communication channel and the RIS, described in the previous sections, with those obtained from a more
realistic model obtained by raytracing outcomes including real measurements from the WP3/WP5 participants.
To ensure a fair comparison, the same scenario (see Figure 41) was reproduced by WP3 members (TUBS
in particular) and simulated using the SiMoNe ray-tracing tool (see Section 4.6), as also detailed in TIMES
D2.2 [18]. Specifically, both the RIS model (see Section 3.3.1) and the BS configuration, originally based on
channel vector computation and MRC at the receiver, both implemented in our custom Matlab-based PHY
simulator, were replaced by the results of raytracing simulations including measurements of the RIS model
provided by Anteral from WP5, and considering that the BS is equipped with the high-gain antenna that will be
employed in the POCs of WP6.

Since deterministic ray-tracing methods are typically applied to static scenarios, the mobility of the machines
was modeled by generating a sequence of scenario snapshots over time, each separated by a defined time
step of 100 us. For each snapshot, WP3 provided the path gain values for all UE-BS and UE—-RIS-BS links,
under both LoS and NLoS conditions. Since the UE transmit power is set to 0 dBm in this study (see Table
11), the received power, denoted as P;, can be easily derived from the path gains according to the well-
known link budget formula. Therefore, Tables 12 and 13 report a comparison of the P, and SNR values at the
BS, respectively, for the theoretical model used in the previous section (i.e., WP4-related) and the raytracing
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Table 12: Comparison of the received power at the BS between the theoretical channel model used in our
study (WP4-related) and the values obtained from ray-tracing (SiMoNe) analysis including models
from real measurements (WP3-related), as a function of the visibility condition.

Link WP3 model, P [dBm)] WP3 model, P [dBm] WP4 model, P, [dBm] WP4 model, P, [dBm]

status from UEO from UE1 from UEO from UE1

LoS -44.45 -47.44 -48.33 -50.7
NLoS n/a -111.67 n/a -59.1
(RIST)

Table 13: Comparison of the SNR at the BS between the theoretical channel model used in our study (WP4-
related) and the values obtained from ray-tracing (SiMoNe) analysis including models from real mea-
surements (WP3-related), as a function of the visibility condition.

Link WP3 model, SNR [dB] WP3 model, SNR [dB] WP4 model, SINR WP4 model, SINR [dB]
status from UEO from UE1 [dBm] from UEOQ from UE1

LoS 24.19 20.75 19.85 17.47

NLoS n/a -43.47 n/a 9.09
(RIST)

[ Proposal, M, = 32 Oracle, without RISs
[ Proposal, M, = 128 = = Oracle, with WP3 model
----- Oracle, with RISs
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Figure 45: Network throughput comparison between our solution and an ideal oracle which has perfect and
continuous knowledge of obstacles and UEs positions, leveraging either the theoretical channel
model from WPA4 or the ray-tracing analysis with real measurements from WP3, under varying radar
update periodicity (t), number of radar receiving antennas (M,), and the presence of RISs.

analysis including measurements of real RIS and antenna model (WP3/WP5-related), only considering the
links under investigation:

* LoS between BS and UEO;

* LoS between BS and UET;

* NLoS between BS and UE1, with an alternative path through RIS1 (see Figure 41),

where it can be clearly seen that the values in LOS conditions are comparable, while the theoretical model
significantly overestimates the performance in NLOS when RIS1 is activated.
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The final results are shown in Figure 45, which, compared to Figure 44, has an additional blue dashed horizon-
tal line illustrating the resulting network throughput obtained with the SiMoNe ray-tracing input compared with
the theoretical results. For a fair comparison, we only hard-coded the received power levels provided by the
WP3 members in our simulations, while we preserved the scenario (see Figure 41), and simulation parameters
(see Table 11). In terms of algorithms, we decided to apply the raytracing-based channel model on the oracle
approach rather than our proposal, that is applying it on exact positions than estimated positions, because
this ensures an exact performance comparison, as the objective of this new curve is to showcase the network
throughput difference when considering a more realistic channel model.

As can be seen, however, this curve overlaps with the oracle-based case simulated with WP4 model and
without activating the RIS, reflecting the severe path loss observed in the WP3 simulations when exploiting
the UE-RIS-BS link. This means that the oracle-based approach with RISs simulated with the theoretical
models, represented by the dotted-dashed line in Figure 45, tends to overestimate the network throughput by
approximately 16% for the studied industrial scenario.

As shown in Table 13, the P, for the UE1-RIS1-BS link, when the direct path is obstructed, is significantly low
(-111.67 dBm). To achieve a bit error probability of, e.g., 10~2 with the modulation order considered in this
study (see Table 11), P, should be approximately —60.4 dBm ''. This explains why the network throughput
obtained with the WP3 model is essentially equivalent to the WP4 results without RIS.

"To achieve P, = —60.4 dBm with the WP3 model, the scenario would need to be scaled down by a factor of approxi-
mately 19.
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5.4 Network-aided blockage prediction for reliable THz communications

The establishment of reliable links for seamless and uninterrupted connectivity comes with a series of chal-
lenges, in particular for higher frequency bands such as millimeter wave and THz [104, 105]. In particular,
severe spreading loss, molecular absorption, and diffuse scattering result in severe path loss that can be com-
pensated by highly-directive antennas and efficient beam management techniques [106]. Ensuring seamless
connectivity requires proactive reasoning; therefore, being able to predict the blockage status of a link in ad-
vance is a paramount prerequisite. In this way, a heavily obstructed link can be replaced by (e.g.), dynamically
configuring a RIS within the communication range.

Given the lack of rigorous mathematical models to address link blockage, many recently proposed solutions in
the literature revolve around the use of Machine Learning (ML) techniques. In [107] and [108], observations
of beamforming vectors adopted at the BS side are used to monitor and predict single/multi-directional link
blockages within the next few time frames in a mmWave/sub-THz MIMO system. Anders et al. [109] introduce
a centralized Recurrent Neural Network (RNN)-based predictor, trained using meta-learning to overcome chal-
lenges related to adaptability, few-shot learning, and generalization. While these solutions effectively address
blockage prediction and offer novel approaches, they fall short in terms of scalability to large network scenarios.
Specifically, the prediction task relies on a centralized controller that, unlike our proposed approach, processes
unstructured data, limiting the ability to handle complex and expansive network environments. In [110], the
idea of predicting future blockages from the observation of in-band wireless signal is presented. By exploiting
RNNs and Convolutional Neural Networks (CNNs) for sequence processing (limited to the scope of individual
devices), the authors show that it is possible to exploit self-interference due to multipath components to in-
fer a link’s future blockage status. Similarly, the authors from [111] consider the same task employing Liquid
Time Constant Network (LTC) networks [112] as a light, physics-inspired, and adaptable solution for sequence
processing tasks. While the proposed solutions are effective in identifying short-term blockages, their per-
formance quickly degrades with increasing prediction windows. This is due to devices partial observability,
which is bounded by the phenomenon of self-interference manifesting shortly before the occurrence of a block-
age.

Finally, as blockage prediction lends itself to being addressed through the observation of heterogeneous mea-
surements, different contributions in the literature consider the use of data sources beyond radio channel
measurements, such as camera images [113, 114], range-angle LiDAR maps [115], vehicular sensors [116] or
multimodal data [117].

In this section, we consider a scenario where multiple sensors are connected to an access points through
wireless links, which can be obstructed by moving obstacles. Our goal is to predict in advance the blockage
status of the links by effectively exploiting structured information collected at the sensors. Leveraging recent
advancements in Machine Learning on Graphs (GML), we harness the inherent spatial and temporal (non-
linear) dependencies of the problem at hand. This approach enables us to address the above-mentioned open
challenges related to scalability (C1), partial observability (C2), and long-term predictions (C3).

5.4.1 System model

Our system considers a set M (M| = M) of wireless nodes connected to an access point. These nodes can
represent sensing or actuation devices deployed in an industrial environment communicating with a central
controller. In order to meet typical Quality of Service (QoS) requirements of industrial applications (e.g., motion
control, virtual commissioning, predictive maintenance and control, mobile robot management [118—120]),
and ensure operational safety, LoS condition between nodes and a central controller should be constantly
maintained. To enable proactive identification of LoS blockage, all nodes i € M sense the channel with
periodicity T and store sequential observations. Through periodic measurement reporting, these observations
are sent to the central controller, which is in charge of the training of the ML model for the prediction task. As an
example, in the case of a 5G network this can be achieved by exploiting CSI-RS or SSB measurement reports.
With the aim of exercising a device-agnostic solution, we represent a generic channel measurement using
the notation s;(t). This measurement may range from narrowband power measurements (e.g., CSI-RSRP)
to estimates of Channel Impulse Responses (CIRs), depending on the complexity of the devices. We further
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denote each sequence of measurements as
Xip = {57 ("N lo=(n=2AT) | glw)y (13)

where n indicates the sequence length. We denote the generic antenna gain at the i-th node by g, (¢, v), while
g:(9, v) indicates the gain of the coordinator node/BS.

5.4.2 Problem Formulation

Let us introduce a graph-representation of the network G := (M, £, W, F), where M denotes the set of nodes,
£ indicates the set of edges, W denotes the set of edge weights, and F denotes the set of node features.
Each element e;; € £ represents an ordered connection of nodes (i, /) € M, and the set of peers for every
node collectively defines the edge set £. In our scenario, each node feature x; , = f;, € F corresponds to the
temporal sequence of measurements collected by node i, as defined by Eq. (13). Let us further define the
graph shift operator, denoted as S, as the sparse adjacency matrix S := w; j, for all (i,j) € £.

Given a graph G, and a graph shift operator S, it is finally possible to define the temporal process supported by
the graph as the set X,, € RM*" such that

Xn = A{X1.n X020, s XM.n} - (14)

To simplify our notation, we will refer to X,, as X from this point forward. We further indicate an instantaneous
realization of the graph temporal process X as the graph signal X (&) = {s\™), s{*), ... s{t}.

We formulate the blockage prediction problem as a sequence-to-sequence learning task. The goal is to mini-
mize the cross-entropy loss, denoted as £, by comparing the predicted future blockage status of the i-th node’s

LoS path with the actual ground truth sequence denoted as y(k). Specifically, we express the latter as

Yik =Y asig(t—(s—k) T), (15)
s=1

where k represents the time step horizon, a,; takes values in the set {0, 1} and denotes the blockage status,
and g(t) is a rectangular pulse shape. The width of g(t) is equal to the channel sampling time T for each
edge node. Considering the set of temporal sequences for all nodes i € M yields a structured sequence
Y. = {y1x --Ymx}. For ease of notation, we will refer to Y, as Y in the remainder of the section. The goal is
to learn a function ®(X, S, §), parametrized by 6, such that, from the observation of the structured sequence X
the loss L(®(X, S, 0),Y) is minimized. Accordingly, the loss function L is defined as

L($(X,S,0),Y) =

1 &1 .
i Z - Z Yij - log (P(9i; =1 ®)) + (16)

i=1 j=1
(1= yi ) - log(P(9i; = 0] ®)) ,
where y; represents the j-th element of the sequence predicted by ¢. We aim to solve the above-introduced

problem through empirical risk minimization, i.e., by learning a function parametrization 6 to minimize the
empirical loss function over a training set 7 ~ P(X,Y)

arg min > L(9(X,S,0),Y) . (17)
(X, y)eT
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(a) Realistic industrial scenario (20 x 10 m?)

(b) Empty room scenario (5 x 10 m?)

Figure 46: Ray tracing scenarios. Note: fewer receivers are depicted in the figures for visual purposes.

5.4.3 Methodology

Ray tracing simulation & scenarios We consider a set of distributed nodes according to the system
model in Section 5.4.1. With the aim of advancing reproducible research, we use ray tracing simulations with
the open-source tool Sionna [23] to evaluate distributed channel measurements in various environments and
blocking conditions. In our simulations, we consider one transmitter and r = 25 receivers communicating at
300 GHz within two distinct scenarios (Figure 46), namely:

» Empty room: in an environment consisting of an empty room with concrete walls and receiver positions
arranged in a fixed grid (Section 5.4.4), or randomly sampled from a uniform Poisson Point Process
(PPP) (Section 5.4.4), we introduce a metallic cube acting as a blocker. This cube moves linearly from
one point of the room to another, with its start and stop positions randomly determined.

* Realistic industrial scenario: we model realistic trajectories for a mobile robot navigating the industrial
environment of the BI-REX smart factory in Bologna, Italy [18]. From a collection of feasible regions
ensuring direct LoS with a receiver mounted on a wall within the area, we randomly select a set of
receivers for every experiment.

From these environments, we generate two distinct datasets 7;4 5, comprising / = 150 independent experi-
ments with random blocker mobility patterns. During each experiment, a set of r nodes collectively senses the
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wireless environment for a sequential number of n = 80 steps. The outcome of the ray tracing simulation can
be formally described as a Directional Channel Impulse Response (DCIR) h;(t, 7, ¢,%) in the time (t)-delay
(r)-angular (¢, ) domain [121], evaluated at each node i € M. Accordingly, the resulting CIR in the time-delay
domain, assuming far-field conditions, is given by

h,-(t,r)=A[bhf(t,f,¢,w)'gt(¢,w)'g,,-(¢,¢) do di (18)

The contribution of the directional gain in Eq. (18) yields a straightforward, yet interesting tradeoff. When com-
municating at THz frequency, directional gain and efficient beam alignment are beneficial to overcome severe
path loss and improve link spectrum efficiency. Yet, when the same waveform is used to derive environment
information for blockage prediction (or any other kind of sensing task), a highly directional channel yields a
less informative mean of information, as secondary Multipath Components (MPCs) are strongly attenuated.
To this end, considering the graph signal of channel measurements collectively sampled by the network of in-
dustrial nodes (collected at a centralized controller) provides an effective means to avert the above-mentioned
tradeoff without requiring additional radio resources for sensing (e.g., to perform periodic beam sweeping).
Nonetheless, in our simulations, we opted to leave the CIR unfiltered in space to evaluate the performance
gain introduced by the Spatio-Temporal Graph Neural Network (STGNN) under worst-case conditions. We
anticipate that incorporating directional filtering of the CIR would widen the performance gap even further com-
pared to other baselines, as the wireless signature phenomenon (i.e., increased self-interference due to MPCs)
becomes less noticeable. However, this aspect remains a subject for future investigation.

As previously remarked, one of the objectives of our framework is to exercise a device complexity-agnostic
solution. In this regard, it would be unrealistic to assume low complexity devices able to estimate CIRs and
use them directly for blockage prediction. Instead, we consider node measurements s;(t) to coincide with the
channel gain, which is directly proportional to the received power under the assumption of constant transmit

power, as per
2

si(t) = ‘/_‘X’ hi(t, 7) dr (19)

Spatio-Temporal Blockage Prediction Graph-structured temporal sequences are inherently character-
ized by spatial and temporal dependencies. Learning from sequences of graph signals involves the flow and
processing of information in the spatial/temporal domain as a means to capture and model such dependencies.
Recently, a variety of deep graph-recurrent [122—124] and graph-convolutional [125] models able to process
structured sequential data in both domains have been shown to achieve state-of-the-art performance in a va-
riety of learning tasks. Here, inspired by recent advancements in the field, we consider a simple yet effective
solution to tackle link blockage prediction by leveraging the collective observations gathered from a network
of nodes. In our model, we sequentially process spatial information using graph-convolutional heads and
temporal information through stacked recurrent layers. In this way, graph-structured signals X(tx) € X, with
k € {1, ..., n}, are convolved over the graph space before being reconstructed and processed as sequences.
The considered graph operator is formally expressed by

') = o (600 1605wy n ) (20)
JEN(i)

In this equation, hE"tk) refers to the node embedding of the /-th node, at time t, and layer /. hfkl't*) is equal to
the instantaneous node observation s{*). The function o(+) represents a non-linear activation function, such as
RelLu or sigmoid. The model parameters at layer / are represented by 9&’), which are calculated differently for
the node embedding and its neighborhood. Finally, w; ; refers to an arbitrary edge weight between node i/ and
J, and A/(/) is the node’s neighborhood. The node embeddings are computed sequentially for all time instants
using the same model parameters 6, and updated simultaneously during training. A sequence of temporal
node embeddings, denoted as h(.’), is then reconstructed by concatenating all elements h{"t%) by row

i i

h) = [p) (] (21)
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For clarity of notation, in the following, we denote each temporal element of (21) as h(*), implying that the
embedding of each node is computed at the last graph layer. The sequence (21) is subsequently processed by
stacked Long-Short Term Memory (LSTM) layers [126], according to the formulation proposed in [127], where
each cell updates its latent space h(*) as per

i = o (9h,inh(t) + 65 (nh T 4 e in © Y 4 bin) :
FO) = o (é)h,fht +0; D 40 0t 4 bf) ,
¢® = £ o =1 1 () & tanh (eh,chm +6; Y 4 bc) , (22)

o) = o (9h,oh(f) 40, AV 40,06 bo) ,
h() = 0 © tanh (),

where in(), f(t) ¢t o() represent the input, forget, cell, and output gates respectively. h(Y) denotes the latent
hidden space, and h(*) represents the embedding space of the upstream graph convolutional layers which is
supplied as model input at every time step. Finally, the model parameters for every gated unit are denoted by
0., and ® denotes the Hadamard product.

One major advantage of the proposed formulation is its ability to facilitate scalable learning. Unlike centralized
models working over unstructured data, for which augmenting the number of devices in the network incurs
in the curse of dimensionality, STGNN offers a scalable solution to network size by operating on local neigh-
borhoods of nodes, which allows for efficient processing of large graphs without requiring global information.
Additionally, the model parameters 6 are applied for message transformation to all nodes across the graph G
through the operator S, making the number of parameters irrelevant to network size and enabling inference
over graphs of varying sizes. This means that the proposed solution can be trained on a small network and
seamlessly used for inference on a larger setting.

5.4.4 Experimental Results

We evaluate the predictive performance of our solution against a set of baselines. Our objective is to jointly
address the challenges C1, C2, and C3. To that end, we conduct an ablation study, which, at the same
time, involves testing our solution against representative family of models that have been recently employed
in the literature, including centralized [107—109] and decentralized [110,111] RNNs for sequence processing.
Specifically, we consider:

+ a stacked LSTM model with partial observability (LSTM partial), i.e., an LSTM model trained on indi-
vidual time series collected by all nodes. This model does not consider spatial relations. However, it is
naturally suited for scalable distributed inference.

+ a stacked LSTM model with global observability (LSTM global), i.e., an LSTM model trained on multi-
variate time series, which accounts for all node observations concurrently. This approach enables the
modeling of spatial relations by simultaneously observing all nodes.

+ a stacked LSTM model with global observability and positional encoding (LSTM global pos. enc.). The
positional encoding of each node is fed as residual information to a fully connected layer downstream
of the stacked recurrent layers. Additionally, node ordering is maintained by arranging node sequences
and (x, y) positions based on their relative distance to a fixed reference point in the room.

» The STGNN model described in section 5.4.3. This model incorporates a relational inductive bias in the
learning process by handling structured data. Unlike the global LSTM models, as described in Section
5.4.3, this solution offers inherent increased scalability to network size.

We categorize our experimental results within transductive and inductive setting. The former relates to model
inference on a held-out test set comprising unlabelled nodes of the same graph G. The latter entails inference
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Figure 47: Numerical experiments - Accuracy.

on unseen graphs during training time, thus denoting the model ability to infer and generalize beyond local
observations. For illustrative numerical experiments, we consider the LSTM models composed by two stacked
recurrent layers with 64 neurons each and one final fully connected layer. The STGNN model, on the other
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Figure 48: Numerical experiments - F1 score.

hand, is composed of three graph layers with embedding dimensions corresponding to {25, 25,10} and the
same downstream recurrent layers of the LSTM models. For the STGNN, we further consider a set £ of binary
edge weights where ¢;; = 1 < /(x; — x;)2 + (yi — y;)®> < r, and r = 2.5[m] in the case of empty room
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scenario, whereas r = 6 [m] in the case of realistic industrial scenario.

Transductive setting We evaluate the nodes’ blockage prediction performance on a held-out test set com-

prising unlabelled nodes on a static graph. We perform blockage simulations within the empty room scenario

considering a total of 120 independent blockage trajectories for training, and 30 for testing. Each experiment

yields 80 sequential channel observations by a set of 25 nodes. The nodes are arranged over a fixed grid

and evenly spaced within the 10x5 m? room. The results of 32 independent training iterations with random

parameter initialization have been summarized in Figure 47(a) and 48(a) in terms of overall accuracy and F1
score, computed as:

2-TP
F1= :
2-TP+FP+FN

where TP, FP, and FN represent the number of true positives, false positives, and false negatives, respec-
tively.

(23)

In the transductive scenario, the LSTM partial heavily underperforms with respect to the centralized solutions
and the STGNN. This is imputable to the fact that the model is not able to compensate for partial visibility
and thus can only rely on local observations to predict blockages. This becomes especially pronounced for
long-range predictions, as the influence of the blocker on the LoS channel becomes visible to the node only
a few time steps before the actual blockage occurs. On the other hand, the STGNN slightly outperforms the
LSTM global model and approaches the performance of the LSTM global with positional encoding. This is a
noteworthy accomplishment as both baseline models benefit from explicit information in a static scenario, which
makes them non-scalable approaches and unable to generalize as effectively as the STGNN in a dynamic
setting, as demonstrated in the following subsection.

Inductive setting We evaluate the ability to predict blockages for scenarios beyond the model’s local ob-
servations during training time. Specifically, we consider the task of blockage prediction in a dynamic setting,
where inference is performed over unseen graph structures. This involves incorporating node positions from
independent realizations of PPPs and blocker trajectories within the same room. Additionally, we evaluate
the model performance when tasked to perform inference on the realistic scenario, while being trained on the
empty room scenario.

Figure 47(b) and 48(b) depict numerical results obtained in the inductive setting, where training and inference
are performed in the same scenario, i.e., empty room. Several notable observations can be made. Firstly,
STGNN consistently outperforms all baseline models, aligning with our expectations owing to its enhanced
ability to generalize across inductive scenarios compared to models relying solely on explicit information. Sec-
ondly, LSTM global exhibits notably inferior performance compared to other models. This is attributed to its
lack of permutation equivariance, which, conversely, is a prominent feature of GNNs. As a consequence, its
performance is affected by random sampling from the PPP, leading to inconsistent ordering in the model input
space, which is perceived as independent observations. While the introduction of positional encoding and
node ordering partially mitigates these issues, the resultant LSTM global pos. enc. model still falls short of
STGNN'’s performance. On the other hand, the LSTM partial model remains unaffected by the inductive sce-
nario in terms of performance compared to its performance in the transductive case. This is because the latter
is trained on all sequences collected by the nodes but presented with one sequence at a time. Notably, the
performance gap between STGNN and LSTM global pos. enc. slightly decreases by considering longer time
horizons. This is likely due to the sequential averaging nature of GNNSs, for which relevant information from
further neighbors in the graph space gets averaged through sequential latent space updates. We anticipate
that this aspect could be improved by learning goal-specific (horizon-specific) attention weights, which is left
for future work.

In Figure 47(c) and 48(c), the outcomes of the last inductive experiment are presented. This experiment
involves performing inference on the realistic industrial scenario while using models trained on the empty
room. Testing on the new scenario involves an unseen environment, blocker shape, trajectories, as well as
unseen graph structure and labels. The numerical findings reveal that STGNN surpasses the other models in
terms of accuracy and F1 score, showcasing its capacity to handle unseen observations.
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6 Conclusions and main findings

This deliverable 4.4 constitutes the final submission of WP4 within the TIMES project, with a particular em-
phasis on Tasks T4.3 and T4.4. The purpose of this document is to provide a detailed account of the main
achievements of these two tasks. Specifically, Task T4.3 focuses on the exploration of smart radio environ-
ments to enable physics-aware algorithms and procedures for THz networks, while Task T4.4 addresses the
design of MAC and NET layer protocols tailored for THz communications in intelligent, multi-goal mesh net-
works.

To this end, Section 3 presents the reference models adopted for these contributions, including RF impair-
ments, channel characterization, and RIS modeling, drawing on existing literature that underpins the research
developments described and inputs from other WPs (namely WP2, WP3 and WP5). Sections 4 and 5 then
highlight the various research outcomes for T4.3 and T4.4, respectively, whose key findings are summarized
as follows:

» Sect. 4.1 investigates the problem of cascaded channel estimation in RIS-aided THz wireless commu-
nications under the presence of random EMI. Unlike prior studies [34], a scenario in which the UE, BS,
and interference source are all located within the NF region of the RIS, is considered. By leveraging
known NF statistical characteristics, an AO-based LMMSE estimator is employed to accurately recover
the uplink cascaded channel. Numerical results confirm the necessity of incorporating NF statistics for
channel estimation in such a scenario, and demonstrate the clear advantage of the AO-based LMMSE
estimator over existing alternatives in NF cascaded channel estimation.

» Sect. 4.2 examines the potential of RIS-enhanced deployments in factories at THz frequencies by ex-
ploiting properties of the radiative near-field under LOS conditions. In this case, the LOS MIMO channel
then yields high-rank, enabling parallel communication via its eigenchannels, which can boost the link
capacity significantly. These gains come at a high sensitivity of the additionally used eigenchannels,
though, which has been analyzed in detail for a specific reference scenario.

» Sect. 4.3 presents a power adaptation approach to improve the communication performance of a RIS
assisted link while being impaired by transmit PA nonlinearity and limitations in RIS phase shifting capa-
bilities. The results show that allowing for the variation in transmission power allows for the improvement
in the communication performance. Moreover, the results have shown that the improvement due to power
adaptation is significant when phase shifting capabilities at the RIS are good, while limited performance
gains can be achieved if the RIS has low resolution at its elements’ phase shifters.

» Sect. 4.4 presents an in-depth analysis of the performance limits in the near-field of a SIMO monostatic
ELAAs for target position (in terms of range and AoA) and velocity estimation. More specifically, the
asymptotic CRLB for range and angle estimation is derived in the geometric near-field region, showing
a performance saturation mainly due to the adoption of the true phase profile for range and due to the
nonuniform signal strength across the array for AoA. Concerning instead velocity estimation in near-field
region, the adoption of ELAAs allows the projection of the target velocity along the set of directions that
connects the target and each element of the array. This permits the estimation not only of the radial
component of the velocity, as in far field, but also the transverse component, which ensures a more
detailed picture of the target motion.

+ Sect. 4.5 addresses the joint design of transmit beamforming at the AMAF and phase shift configuration
of the RIS in a multi-user MISO downlink system operating in the near field. An alternating optimization
framework based on the WMMSE criterion is employed to jointly refine active and passive beamforming
strategies, aiming to maximize the system sum-rate while mitigating inter-user interference. Numeri-
cal results show that the proposed heuristic RIS configuration, based on a focusing strategy, achieves
per-UE and sum-rate performance nearly matching that of the MMSE-based scheme, requiring sub-
stantially lower computational burden and no CSI. Its performance also closely approaches that of the
fully optimized solution, while avoiding channel estimation and significantly reducing complexity. This
confirms its suitability as a low-complexity, scalable, and near-optimal strategy for near-field multi-user
MISO systems in future 6G scenarios.

101096307 - TIMES BGSNS 101 of 110



%N
D4.4 - Deliverable on multi-goal mesh network optimization and N 1 2
exploitation of smart propagation environments - v1.0 T I M S

a0

+ Sect. 4.6 has presented raytracing-based simulations to demonstrate that reliable communication via a
RIS at 285 GHz is feasible in an industrial environment over distances exceeding 50 m, provided suffi-
ciently high RCS values are achieved. The evaluation shows that a constant RCS of at least —18 dBsm
enables basic data transmission, while values above 0 dBsm allow operation with 64-QAM and high-rate
FEC, reaching the maximum data rate at a bandwidth of 2.16 GHz defined in [40]. These results will
be taken into account for defining the layout of the POC that will be carried out as part of WP6 in the
Robopac factory hall.

+ Sect. 5.1 proposes two fully distributed multi-hop routing protocols for THz networks that rely solely on
user-plane data transmissions: TL and TB, and an extension of TB based on MADRL. Under static con-
ditions, the TB protocol outperforms TL due to efficient next-hop selection and lower channel overhead,
especially with high TTL values that limit neighbor table updates. However, when the overhead increases
(e.g., due to a higher number of UEs or larger payloads), TB suffers from frequent neighbor losses, which
can result in suboptimal next-hop selection. In contrast, TL offers a higher likelihood of reaching the BS,
though often through non-optimal paths, which leads to higher average latency compared to TB. In
dynamic scenarios, the MADRL-based approach outperforms classic TB throughput due to its ability to
optimally choose between unicast and broadcast transmissions, enabling better adaptation to changing
network conditions. However, this results in higher average latency, as distant UEs more frequently suc-
ceed in reaching the BS, increasing the number of hops in successful transmissions. Overall, shorter
TTL values further enhance performance by allowing more frequent updates of the neighbor table in dy-
namic environments. Through this analysis, which was obtained through simulations, using a scenario,
channel model, and parameters defined based on inputs from WP2, WP3, and WP5, respectively, we
identify a set of trade-offs between throughput and latency which affect the choice of the best performing
protocol and are influenced by network conditions such as channel overhead, UEs’ density, and mobility
conditions.

» Sect. 5.2 has proposed a centralized RL-based model, developed at the BS, to dynamically manage
network access in a highly congested, multi-goal industrial environment. In this context, sensors gen-
erate data with different priorities and corresponding requirements that vary over time. The proposed
model predicts requirements variability and enables optimal assignment of the CSMA CW values to in-
dividual sensors. The proposal has been evaluated against benchmark approaches based on traditional
CSMA, with fixed CW configurations. Results demonstrate that the presented approach offers superior
adaptability to dynamic and heterogeneous traffic priorities by autonomously adjusting CW assignments
in response to user-specific needs. This enables the joint satisfaction of stringent latency and success
probability requirements for different network conditions and/or temporal evolution. In contrast, static
configurations either fail to meet these dynamic demands or require multiple trials to identify a suitable
setup.

» Sect. 5.3 presented an algorithm that dynamically and proactively configures the THz network (i.e., BS
and RISs) based on centimeter-level sensing data obtained from a multi-antenna radar co-located with
the BS. The proposed solution is validated through network-level simulations of uplink data traffic in a
realistic, dynamic industrial environment and compared against an ideal oracle with perfect, continuous
environmental knowledge. The main findings of this study highlight the importance of both frequent radar
updates to maintain seamless knowledge of the scenario over time and high radar resolution to achieve
a proper radar target estimation at THz frequencies. This is crucial to handle the potential issue of beam
misalignment due to the extremely narrow beams at these frequencies. Notably, numerical results show
that our approach can closely match the oracle’s network throughput when the radar has at least 128
receive antennas and generates radio maps with a periodicity of at most 100 us. The analysis using
the WP3 channel model highlights that the two PHY-layer results are in close agreement under LoS
conditions. Therefore, for the studied industrial scenario, the free-space model used in WP4 can be con-
sidered a reasonable approximation for THz communications. On the other hand, the approximated RIS
model in WP4 tends to overestimate the NLoS link when compared with the realistic RIS implementation,
even considering the high-gain antenna of WP5 at the BS.

» Sect. 5.4 presented an Al-based solution to predict in advance the blockage status of the links by ef-
fectively exploiting structured information collected at the nodes. The experimental results validate the
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effectiveness of the proposed STGNN model for LOS blockage prediction, as exemplified by predict-
ing blockage for THz links in industrial environment. The STGNN architecture consistently outperforms
baseline approaches across various settings, demonstrating its ability to leverage both spatial and tem-
poral dependencies within the network. Importantly, the framework excels in inductive learning tasks,
where the model generalizes well beyond the training data to predict blockages in unseen environments
with different graph structures and blocker dynamics. The proposed solution has the potential to be
deployed for low-latency decentralized inference in a mesh network with peer-to-peer communication, in
accordance with the principle of Centralized Training - Decentralized Execution (CTDE).

Overall, the presented set of scientific results establishes important milestones (i) in the theoretical char-
acterization and practical exploitation of smart propagation environments for THz networks, and (ii) in the
development of both model-based and data-driven algorithms and procedures for intelligent mesh networks
operating at THz frequencies. The significance of these contributions is evidenced by their direct or in-
direct dissemination through publications in leading first- and second-tier journals and conferences (see,
e.g., [21,22,24, 34,38, 39, 43,64,67,90, 97,98, 120, 128] or check the TIMES website). Moreover, some of
the concepts introduced in this deliverable will be integrated into the experimental activities of the TIMES
project (i.e., WP6-related) for further validation.
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